Areas Between Curves

MATH 1700

Readings

Readings: Section 6.1

The area between curves case I

Theorem

Let f and g be continuous functions on $[a, b]$ such that $f(x) \geq g(x)$ for all x in $[a, b]$. The area bounded by the curves $y=f(x), y=g(x)$, the line $x=a$ and the line $x=b$ is

$$
\int_{a}^{b}[f(x)-g(x)] d x
$$

The area between curves case II

Theorem
Let f and g be continuous functions on $[a, b]$. The area bounded by the curves $y=f(x), y=g(x)$, the line $x=a$ and the line $x=b$ is

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

Regions bounded by functions of y

If a region A is bounded by the lines $y=c, y=d$, and functions $x=f(y)$ and $x=g(y)$ such that $f(y) \geq g(y)$, then

$$
\text { Area }=\int_{c}^{d}(f(y)-g(y)) d y
$$

Regions bounded by functions of y

If a region A is bounded by the lines $y=c, y=d$, and functions $x=f(y)$ and $x=g(y)$ such that $f(y) \geq g(y)$, then

$$
\text { Area }=\int_{c}^{d}(f(y)-g(y)) d y
$$

and in general, when $f(y)$ is not necessarily always greater than $g(y)$,

$$
\text { Area }=\int_{c}^{d}|f(y)-g(y)| d y
$$

