Section 4.4: L'Hôpital's rule

MATH 1700

L'Hôpital's rule for limits at a

Assume that (1) f and g are differentiable on an open interval $/$ containing a (except possibly at a) and (2) $g^{\prime}(x) \neq 0$ on I. If either

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

or

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

so long as

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { exists or is } \pm \infty .
$$

L'Hôpital's rule for right/left hand limits or limits at $\pm \infty$

In the previous slide, if you replace

$$
\lim _{x \rightarrow a} f(x)
$$

everywhere by

$$
\lim _{x \rightarrow a^{+}} f(x), \text { or } \lim _{x \rightarrow a^{-}} f(x)
$$

or

$$
\lim _{x \rightarrow \pm \infty} f(x)
$$

then the result is still true.

Indeterminate products

Inderminate products

If you need to find

$$
\lim _{x \rightarrow a} f(x) g(x)
$$

when

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

try applying L'Hôpital's rule to

$$
\frac{f(x)}{1 / g(x)} \text { or } \frac{g(x)}{1 / f(x)} \text {. }
$$

Indeterminate products

Inderminate products

If you need to find

$$
\lim _{x \rightarrow a} f(x) g(x)
$$

when

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

try applying L'Hôpital's rule to

$$
\frac{f(x)}{1 / g(x)} \text { or } \frac{g(x)}{1 / f(x)} .
$$

Same trick works for

$$
\lim _{x \rightarrow \pm \infty} f(x) g(x)
$$

if one goes to 0 and the other goes to $\pm \infty$.

Indeterminate differences

If you need to find

$$
\lim [f(x)-g(x)] \quad \text { when } \quad f(x) \rightarrow \infty \text { and } g(x) \rightarrow \infty
$$

play around with the expression algebraically until you can apply L'Hôpitals rule or possibly some other method.

Indeterminate powers

If you need to find

$$
\lim f(x)^{g(x)}
$$

when

$$
\begin{aligned}
& \quad 1 . f \rightarrow 0 \text { and } g \rightarrow 0 \\
& \text { or } 2 . f \rightarrow \infty \text { and } g \rightarrow 0 \\
& \text { or } 3 . f \rightarrow 1 \text { and } g \rightarrow \pm \infty
\end{aligned}
$$

try rewriting this as

$$
f(x)^{g(x)}=e^{g(x) \ln f(x)}
$$

