136.102 Math in Art
 Midterm Exam
 February 24, 2005

Brief solutions

1. Subdivide the given line-segment into three equal parts (using an unmarked ruler and a compass). Do not forget to briefly describe your steps.

We are given the line segment AB . First draw any line through A that is not passing through B. In the picture it is denoted by l. Then mark on l three equidistant points A_{1}, A_{2} and A_{3} (use a compass, any radius). Join A_{3} and B. Then CONSTRUCT two lines passing through A_{1} and A_{2} respectively and that are parallel to the line through A_{3} and B (the construction is not shown here but should have been shown in the exam; we did it in class). The intersection points with the line segment $A B$ will subdivide it into three equal parts.
2. (a)[6] Construct a golden rectangle to the right of the line segment given below (the shorter side of the rectangle). Do not forget to briefly describe your steps.

This is completely solved in the textbook (Section 3 in Chapter 1).
3. (a)What are Fibonacci numbers? (Write down the definition.)

It is a sequence of numbers $f_{1}, f_{2}, f_{3}, \ldots, f_{n}, \ldots$ such that $f_{1}=1, f_{2}=1$ and any other number in that sequence is the sum of the preceding two numbers.
(b) The $22^{\text {nd }}$ Fibonacci number f_{22} is 17711 . The $20^{\text {th }}$ Fibonacci number f_{20} is 6765 . Find the $21^{\text {st }}$ Fibonacci number f_{21}.

Since $f_{22}=f_{21}+f_{20}$, it follows that $f_{21}=f_{22}-f_{20}$, so that $f_{21}=17711-6765=10946$.
4. The lower image of an apple is obtained by rotating the other image of the apple around a center O and by an angle θ. Construct the center O and identify the angle of rotation θ.

Bisect the line segment AB (connecting two corresponding points on the apples). That gives the line l. Then bisect any other line segment connecting two corresponding points on the two apples (in the pictures, these are the points C and D). Get the line m. The center O of the rotation is in the intersection of the lines m and l. The angle of the of the rotation is AOB (in red).
5. Find the group of symmetries for each of the three objects shown below. If you claim a rotational symmetry, indicate the center of the rotation and the angle of rotation. If there are reflections, show the line of reflection. If there are translational symmetries show or describe the vectors of translation.

OBECT	THE GROUP OF SYMMETRIES Itentity and the reflection with respect to the vertical line shown in the picture.

