MATH 2730 Sequences and Series
 Midterm Exam
 5:30-6:30, February 27, 2008

Brief Solutions

1. (a) Complete the following definition: A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a number L (written $\lim _{n \rightarrow \infty} a_{n}=L$) if
(b) Use only the definition of the limit of a sequence to show that the sequence $\left\{\frac{-1}{\sqrt{n}+1}\right\}_{n=1}^{\infty}$ converges to 0 (i.e., that $\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{n}+1}=0$). No points will be given if the definition of limit is not used.

Given $\varepsilon>0$, we are looking for N such that if $n>N$ then $\left|\frac{-1}{\sqrt{n}+1}-0\right|<\varepsilon$. We analyze the last inequality:
$\left|\frac{-1}{\sqrt{n}+1}-0\right|<\varepsilon \Leftrightarrow\left|\frac{-1}{\sqrt{n}+1}\right|<\varepsilon \Leftrightarrow \frac{1}{\sqrt{n}+1}<\varepsilon \Leftrightarrow 1<\varepsilon(\sqrt{n}+1) \Leftrightarrow 1<\varepsilon \sqrt{n}+\varepsilon \Leftrightarrow$
$\Leftrightarrow 1-\varepsilon<\varepsilon \sqrt{n} \Leftrightarrow \frac{1-\varepsilon}{\varepsilon}<\sqrt{n} \Leftrightarrow\left(\frac{1-\varepsilon}{\varepsilon}\right)^{2}<n$
(We have assumed in the last step that $\varepsilon<1$, but that is a minor point. Each of the steps indicated by \Leftrightarrow is simple or evident.)
Now we choose N to be any number larger than $\left(\frac{1-\varepsilon}{\varepsilon}\right)^{2}$. Then if $n>N$, and the last inequality in the above long sequence of inequalities indicated by $(*)$ will be satisfied. Consequently, so will the first inequality in (*), and so we achieved what we wanted.
2. Check if the following series converges, and if it does converge, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n} \sqrt{n+1}}$
$\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n} \sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n} \sqrt{n} \sqrt{1+\frac{1}{\sqrt{n}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{\sqrt{n}}}}=1>0$ and so the series diverges by the divergence test.
(b) $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$
$\frac{2}{n(n+2)}=\frac{A}{n}+\frac{B}{n+2}$ gives $2=A(n+2)+B n$ which in turn yields the system $2=2 A$, $0=A+B$. Solving, yields $A=1, B=-1$, so that $\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{(n+2)}$. Now we write
the n-th partial sum of the series:
$s_{n}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\ldots$.
$\ldots+\left(\frac{1}{n-3}-\frac{1}{n-1}\right)+\left(\frac{1}{n-2}-\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right)$
We see that almost all of the terms cancel, and we get that $s_{n}=1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$. Now it is easy to calculate $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right)=\frac{3}{2}$. So the series converges and its sum is $\frac{3}{2}$.
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n+2}}$
$\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n+2}}=\sum_{n=0}^{\infty} \frac{2^{n}}{9\left(3^{n}\right)}=\frac{1}{9} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{1}{9} \frac{1}{1-\frac{2}{3}}$.
3. (a) First confirm that the integral test can be used for the series $\sum_{n=2}^{\infty} \frac{1234}{n(\ln n)^{2008}}$, then use it to check if that series converges.

First of all, $\sum_{n=2}^{\infty} \frac{1234}{n(\ln n)^{2008}}=1234 \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2008}}$, so that we can focus on the last series.
Consider the function $f(x)=\frac{1}{x(\ln x)^{2008}}$ for $x \geq 2$. It is obviously positive, continuous and decreasing. So, the integral test is usable.
$\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2008}}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{d x}{x(\ln x)^{2008}}$. The substitution $u=\ln x$ gives
$\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{d x}{x(\ln x)^{2008}}=\lim _{t \rightarrow \infty} \int_{x=2}^{x=t} \frac{d u}{u^{2008}}=\lim _{t \rightarrow \infty}\left(\frac{u^{-2007}}{-2007} \left\lvert\, \begin{array}{l}x=t \\ x=2\end{array}\right.\right)=\lim _{t \rightarrow \infty}\left(\left.\frac{(\ln x)^{-2007}}{-2007}\right|_{2} ^{t}\right)=$
$=\lim _{t \rightarrow \infty}\left(\frac{1}{2007(\ln 2)^{2007}}-\frac{1}{2007(\ln t)^{2007}}\right)=\frac{1}{2007(\ln 2)^{2007}}$
Since we got a finite number, the integral converges, and so does the series.
(b) Check if the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+2^{n}}$ converges.

This is an alternating series. Putting $b_{n}=\frac{1}{n^{2}+2^{n}}$, we see that this sequence is decreasing and that $\lim _{n \rightarrow \infty} b_{n}=0$. So, the series converges by the alternating series test.
4. Check if the series converges conditionally, if it converges absolutely or if it diverges.
(a) $\sum_{n=1}^{\infty} \frac{2 \cos (\pi n)}{2 n+3}$

Since $\cos (\pi n)$ is 1 for even n and -1 for odd n, this is an alternating series. The alternating series test applies and it is easy to see that it shows that the series converges. However, the
series $\sum_{n=1}^{\infty} \frac{2}{2 n+3}$ made of the absolute values of the terms diverges: that is also easy to see by, say, using the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$. We conclude that the series given in the statement of this question converges conditionally.
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$

This is a positive series, so, for this series, the notion of absolute convergence is the same as the notion of convergence. We use the ratio test:
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(2 n+2)!}{((n+1)!)^{2}}}{\frac{(2 n)!}{(n!)^{2}}}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1}{(n+1)(n+1)}=4$
and since this number is >1, the series diverges.

