

Math 2730 Assignment 4

Solutions

1. Find the power series with sum equal to $g(x) = \frac{x^2}{(1+2x)^2}$ and find the interval of convergence of the power series.

Solution. First we focus on the function $h(x) = \frac{1}{(1+2x)^2}$. Observe first that

$h(x) = \frac{1}{2} \left(\frac{1}{1+2x} \right)$. Now, from what we know, $\frac{1}{1+2x} = \sum_{n=0}^{\infty} (-2x)^n$ and the series

converges for $|2x| < 1$, which gives $-\frac{1}{2} < x < \frac{1}{2}$. Consequently,

$h(x) = \frac{1}{2} \left(\frac{1}{1+2x} \right) = \frac{1}{2} \left(\sum_{n=0}^{\infty} (-2x)^n \right)$ and within $-\frac{1}{2} < x < \frac{1}{2}$ we can differentiate term by

term to get $\frac{1}{2} \left(\sum_{n=0}^{\infty} (-2x)^n \right)' = \frac{1}{2} \sum_{n=1}^{\infty} (-2)^n nx^{n-1}$ (note the change of the start of the counter: the term we get for $n=0$ in the series we differentiate is annihilated after differentiation).

So, summarizing, $h(x) = \frac{1}{2} \sum_{n=1}^{\infty} (-2)^n nx^{n-1}$ for $-\frac{1}{2} < x < \frac{1}{2}$. Our original function was

$x^2 h(x)$, and so $x^2 h(x) = \frac{1}{2} x^2 \sum_{n=1}^{\infty} (-2)^n nx^{n-1} = \sum_{n=1}^{\infty} (-2)^{n-1} nx^{n+1}$ over $-\frac{1}{2} < x < \frac{1}{2}$ (where in

the second equality we have simply multiplied every term of the series by $\frac{1}{2}x^2$.

2. Show directly (using Taylor's inequality) that $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.

Solution. Every derivative of $\cos x$ is either $\pm \cos x$ or $\pm \sin x$, and so, with $f(x) = \cos x$, we have that $|f^{(n+1)}(x)| \leq 1$ for every x . Consequently, by Taylor's inequality,

$|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!}$ for every x . Since $\lim_{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$, it follows that $\lim_{n \rightarrow \infty} R_n = 0$ and so

$f(x) = \cos x$ is equal to its Maclaurin series representation.

3. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.

(a) $\frac{e^{2x^2} - 1}{x^2}$

(b) $\sin x \cos x$ (Hint: start with $\sin 2x$)

(c) $\tan^{-1}(3x)$

(a) We know that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all numbers x . So $e^{2x^2} = \sum_{n=0}^{\infty} \frac{(2x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!}$ and thus $\frac{e^{2x^2} - 1}{x^2} = \frac{1}{x^2} \left(\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!} - 1 \right) = \frac{1}{x^2} \left(\sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n!} \right)$ where in the last equality we have cancelled the term we get for $n=0$ with the -1). Further, $\frac{1}{x^2} \sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n!} = \sum_{n=1}^{\infty} \frac{2^n x^{2n-2}}{n!}$ (after multiplying each term by $\frac{1}{x^2}$). So $\frac{e^{2x^2} - 1}{x^2} = \sum_{n=1}^{\infty} \frac{2^n x^{2n-2}}{n!}$ and the representation is true for every number x except $x=0$.

(b) Recall that $\sin 2x = 2 \sin x \cos x$ so that our starting function $\sin x \cos x$ is the same as $\frac{1}{2} \sin 2x$. We know that $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ for every number x , so that $\frac{1}{2} \sin 2x = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+1}}{(2n+1)!}$. The representation is true for every number x .

(c) We have that $(\tan^{-1} x)' = \frac{1}{1+x^2}$. On the other hand, since $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for x in $(-1,1)$,

it follows that $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ over the same interval $(-1,1)$.

Consequently, $\tan^{-1} x = \int \frac{1}{1+x^2} dx + c = \int \sum_{n=0}^{\infty} (-1)^n x^{2n} + c$. Within the interval of

convergence we can integrate term by term, so that

$$\tan^{-1} x = \int \left(\sum_{n=0}^{\infty} (-1)^n x^{2n} \right) dx + c = \sum_{n=0}^{\infty} \int (-1)^n x^{2n} dx + c = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + c. \text{ Since}$$

$\tan^{-1} 0 = 0$ and since the series $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ is also 0 when $x=0$, it follows that the

constant c is 0. So, $\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ for x in the interval $(-1,1)$, and so

$$\tan^{-1} 3x = \sum_{n=0}^{\infty} (-1)^n \frac{(3x)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{2n+1}}{2n+1} \text{ for } 3x \text{ in } (-1,1), \text{ i.e., for } x \text{ in the interval } (-\frac{1}{3}, \frac{1}{3}).$$

4. Find the Taylor series representation of the function $\ln x$ centered at $a=3$.

Taylor's formula tells us that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$. In this question $f(x) = \ln x$ and $a=3$. We compute: $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2 \cdot 1}{x^3}$, $f^{(4)}(x) = -\frac{3 \cdot 2 \cdot 1}{x^4}$, and, in general, $f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{x^n}$. So, $f^{(n)}(3) = (-1)^{n+1} \frac{(n-1)!}{3^n}$ (with $f^{(0)}(3) = f(3) = \ln 3$) and, after substituting this in the Taylor's formula, we get

$$f(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n-1)!}{3^n n} (x-3)^n. \text{ We simplify this a bit to get our final answer:}$$

$$f(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^n n} (x-3)^n.$$

4. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln(2+x) \cdot \tan^{-1}(x^2)$.

First, $\ln(1+x) = \int \frac{1}{1+x} dx + c = \int \left(\sum_{n=0}^{\infty} (-1)^n x^n \right) dx + c$, where we have used the fact that

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ for } -1 < x < 1. \text{ Continuing,}$$

$$\int \left(\sum_{n=1}^{\infty} (-1)^n x^n \right) dx + c = \sum_{n=0}^{\infty} \int (-1)^n x^n dx + c = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + c. \text{ So that}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + c. \text{ Substituting } x=0, \text{ we get that } c=0. \text{ So}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}. \text{ Now, } \ln(2+x) = \ln[2(1+x/2)] = \ln 2 + \ln(1+x/2) \text{ and since}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, \text{ we have that}$$

$$\ln(1+x/2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x/2)^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)}. \text{ Summarizing,}$$

$$\ln(2+x) = \ln 2 + \ln(1+x/2) = \ln 2 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)}.$$

Now we pay attention to $\tan^{-1}(x^2)$. Since $\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, we get that

$$\tan^{-1}(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}.$$

Finally we take a look at the product: $\ln(2+x) \cdot \tan^{-1}(x^2)$:

$$\begin{aligned} \ln(2+x) \cdot \tan^{-1}(x^2) &= \left[\ln 2 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)} \right] \cdot \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1} \right] = \\ &= \left[\ln 2 + \frac{x}{2} - \frac{x^2}{2^3} + \dots \right] \left[x^2 - \frac{x^6}{3} + \dots \right] = (\ln 2)x^2 - \frac{x^3}{2} - \frac{x^4}{2^3} + \dots \end{aligned}$$

5. Use power series to evaluate $\int_0^x \cos(t^2) dt$.

Since $\cos t = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!}$, we have that $\cos t^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (t^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!}$. So,

$$\int_0^x \cos(t^2) dt = \int_0^x \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^{\infty} \int_0^x \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}.$$