Math 2730 Assignment 4
 Solutions

1. Find the power series with sum equal to $g(x)=\frac{x^{2}}{(1+2 x)^{2}}$ and find the interval of convergence of the power series.

Solution. First we focus on the function $h(x)=\frac{1}{(1+2 x)^{2}}$. Observe first that $h(x)=\frac{1}{2}\left(\frac{1}{1+2 x}\right)^{\prime}$. Now, from what we know, $\frac{1}{1+2 x}=\sum_{n=0}^{\infty}(-2 x)^{n}$ and the series converges for $|2 x|<1$, which gives $-\frac{1}{2}<x<\frac{1}{2}$. Consequently, $h(x)=\frac{1}{2}\left(\frac{1}{1+2 x}\right)^{\prime}=\frac{1}{2}\left(\sum_{n=0}^{\infty}(-2 x)^{n}\right)^{\prime}$ and within $-\frac{1}{2}<x<\frac{1}{2}$ we can differentiate term by term to get $\frac{1}{2}\left(\sum_{n=0}^{\infty}(-2 x)^{n}\right)^{\prime}=\frac{1}{2} \sum_{n=1}^{\infty}(-2)^{n} n x^{n-1}$ (note the change of the start of the counter: the term we get for $\mathrm{n}=0$ in the series we differentiate is annihilated after differentiation). So, summarizing, $h(x)=\frac{1}{2} \sum_{n=1}^{\infty}(-2)^{n} n x^{n-1}$ for $-\frac{1}{2}<x<\frac{1}{2}$. Our original function was $x^{2} h(x)$, and so $x^{2} h(x)=\frac{1}{2} x^{2} \sum_{n=1}^{\infty}(-2)^{n} n x^{n-1}=\sum_{n=1}^{\infty}(-2)^{n-1} n x^{n+1}$ over $-\frac{1}{2}<x<\frac{1}{2}$ (where in the second equality we have simply multiplied every term of the series by $\frac{1}{2} x^{2}$.
2. Show directly (using Taylor's inequality) that $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$.

Solution. Every derivative of $\cos x$ is either $\pm \cos x$ or $\pm \sin x$, and so, with $f(x)=\cos x$, we have that $\left|f^{(n+1)}(x)\right| \leq 1$ for every x. Consequently, by Taylor's inequality, $\left|R_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!}$ for every x. Since $\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=0$, it follows that $\lim _{n \rightarrow \infty} R_{n}=0$ and so $f(x)=\cos x$ is equal to its Maclaurin series representation.
3. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.
(a) $\frac{e^{2 x^{2}}-1}{x^{2}}$
(b) $\sin x \cos x$ (Hint: start with $\sin 2 x$)
(c) $\tan ^{-1}(3 x)$
(a) We know that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all numbers x. So $e^{2 x^{2}}=\sum_{n=0}^{\infty} \frac{\left(2 x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n} x^{2 n}}{n!}$ and thus $\frac{e^{2 x^{2}}-1}{x^{2}}=\frac{1}{x^{2}}\left(\sum_{n=0}^{\infty} \frac{2^{n} x^{2 n}}{n!}-1\right)=\frac{1}{x^{2}}\left(\sum_{n=1}^{\infty} \frac{2^{n} x^{2 n}}{n!}\right)$ where in the last equality we have cancelled the term we get for $\mathrm{n}=0$ with the -1). Further, $\frac{1}{x^{2}} \sum_{n=1}^{\infty} \frac{2^{n} x^{2 n}}{n!}=\sum_{n=1}^{\infty} \frac{2^{n} x^{2 n-2}}{n!}$ (after multiplying each term by $\frac{1}{x^{2}}$). So $\frac{e^{2 x^{2}}-1}{x^{2}}=\sum_{n=1}^{\infty} \frac{2^{n} x^{2 n-2}}{n!}$ and the representation is true for every number x except $x=0$.
(b) Recall that $\sin 2 x=2 \sin x \cos x$ so that our starting function $\sin x \cos x$ is the same as $\frac{1}{2} \sin 2 x$. We know that $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ for every number x, so that $\frac{1}{2} \sin 2 x=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n+1}}{(2 n+1)!}$.The representation is true for every number x .
(c) We have that $\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}$. On the other hand, since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for x in $(-1,1)$, it follows that $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$ over the same interval $(-1,1)$.
Consequently, $\tan ^{-1} x=\int \frac{1}{1+x^{2}} d x+c=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n}+c$. Within the interval of convergence we can integrate term by term, so that $\tan ^{-1} x=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}\right) d x+c=\sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x+c=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+c$. Since $\tan ^{-1} 0=0$ and since the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ is also 0 when $x=0$, it follows that the constant c is 0 . So, $\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ for x in the interval $(-1,1)$, and so
$\tan ^{-1} 3 x=\sum_{n=0}^{\infty}(-1)^{n} \frac{(3 x)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n+1} x^{2 n+1}}{2 n+1}$ for $3 x$ in (-1,1), i.e., for x in the interval $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
4. Find the Taylor series representation of the function $\ln x$ centered at $\mathrm{a}=3$.

Taylor's formula tells us that $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. In this question $f(x)=\ln x$ and $a=3$. We compute: $f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime \prime}(x)=\frac{2 \cdot 1}{x^{3}}, f^{(4)}(x)=-\frac{3 \cdot 2 \cdot 1}{x^{4}}$, and, in general, $f^{(n)}(x)=(-1)^{n+1} \frac{(n-1)!}{x^{n}}$. So, $f^{(n)}(3)=(-1)^{n+1} \frac{(n-1)!}{3^{n}}\left(\right.$ with $\left.f^{(0)}(3)=f(3)=\ln 3\right)$ and, after substituting this in the Taylor's formula, we get
$f(x)=\ln 3+\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \frac{(n-1)!}{3^{n}}}{n!}(x-3)^{n}$. We simplify this a bit to get our final answer:
$f(x)=\ln 3+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^{n} n}(x-3)^{n}$.
4. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln (2+x) \cdot \tan ^{-1}\left(x^{2}\right)$.

First, $\ln (1+x)=\int \frac{1}{1+x} d x+c=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x+c$, where we have used the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$. Continuing,
$\int\left(\sum_{n=1}^{\infty}(-1)^{n} x^{n}\right) d x+c=\sum_{n=0}^{\infty} \int(-1)^{n} x^{n} d x+c=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c$. So that
$\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c$. Substituting $x=0$, we get that $\mathrm{c}=0$. So
$\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}$. Now, $\ln (2+x)=\ln [2(1+x / 2)]=\ln 2+\ln (1+x / 2)$ and since $\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}$, we have that
$\ln (1+x / 2)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x / 2)^{n+1}}{n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{2^{n+1}(n+1)}$. Summarizing,
$\ln (2+x)=\ln 2+\ln (1+x / 2)=\ln 2+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{2^{n+1}(n+1)}$.

Now we pay attention to $\tan ^{-1}\left(x^{2}\right)$. Since $\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$, we get that $\tan ^{-1}\left(x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}$.
Finally we take a look at the product: $\ln (2+x) \cdot \tan ^{-1}\left(x^{2}\right)$:

$$
\begin{aligned}
& \ln (2+x) \cdot \tan ^{-1}\left(x^{2}\right)=\left\lfloor\ln 2+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{2^{n+1}(n+1)}\right\rfloor \cdot\left\lfloor\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}\right\rfloor= \\
& =\left[\ln 2+\frac{x}{2}-\frac{x^{2}}{2^{3}}+\ldots\left[x^{2}-\frac{x^{6}}{3}+\ldots\right]=(\ln 2) x^{2}-\frac{x^{3}}{2}-\frac{x^{4}}{2^{3}}+\ldots\right.
\end{aligned}
$$

5. Use power series to evaluate $\int_{0}^{1} \cos \left(t^{2}\right) d t$.

Since $\cos t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}$, we have that $\cos t^{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(t^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n}}{(2 n)!}$. So, $\int_{0} \cos \left(t^{2}\right) d t=\int_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n}}{(2 n)!} d t=\sum_{n=0}^{\infty} \int_{0} \frac{(-1)^{n} t^{4 n}}{(2 n)!} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1)(2 n)!}$.

