

Math 2730 Assignment 4

Due March 26 in class

1. Find the power series with sum equal to $g(x) = \frac{x^2}{(1+2x)^2}$ and find the interval of convergence of the power series.
2. Show directly (using Taylor's inequality) that $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.
3. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.
 - (a) $\frac{e^{2x^2} - 1}{x^2}$
 - (b) $\sin x \cos x$ (Hint: start with $\sin 2x$)
 - (c) $\tan^{-1}(3x)$
4. Find the Taylor series representation of the function $\ln x$ centered at $a=3$.
5. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln(2+x) \cdot \tan^{-1}(x^2)$.
6. Use power series to evaluate $\int_0^x \cos(t^2) dt$.