Math 2730 Assignment 4 Due March 26 in class

1. Find the power series with sum equal to $g(x) = \frac{x^2}{(1+2x)^2}$ and find the interval of convergence of the power series.

2. Show directly (using Taylor's inequality) that $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.

3. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.

(a) $\frac{e^{2x^2}-1}{x^2}$

(b) $\sin x \cos x$ (Hint: start with $\sin 2x$)

(c)
$$\tan^{-1}(3x)$$

4. Find the Taylor series representation of the function $\ln x$ centered at a=3.

5. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln(2+x) \cdot \tan^{-1}(x^2)$.

6. Use power series to evaluate $\int_{0}^{x} \cos(t^{2}) dt$.