Math 2730 Assignment 4
 Due March 26 in class

1. Find the power series with sum equal to $g(x)=\frac{x^{2}}{(1+2 x)^{2}}$ and find the interval of convergence of the power series.
2. Show directly (using Taylor's inequality) that $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$.
3. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.
(a) $\frac{e^{2 x^{2}}-1}{x^{2}}$
(b) $\sin x \cos x$ (Hint: start with $\sin 2 x$)
(c) $\tan ^{-1}(3 x)$
4. Find the Taylor series representation of the function $\ln x$ centered $\mathrm{at} \mathrm{a}=3$.
5. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln (2+x) \cdot \tan ^{-1}\left(x^{2}\right)$.
6. Use power series to evaluate $\int_{0}^{x} \cos \left(t^{2}\right) d t$.
