
MATH 2730 Assignment 3

Due March 10, 2008, (Solutions)

1. Which of the following series converges absolutely, which converges conditionally
and which diverges? Justify your answers.
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Consequently the series in this problem converges absolutely.
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converges, the original series converges absolutely.
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 converges, the

series in this problem converges absolutely.

2.  Find the interval of convergence for the following power series.
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For the series 
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(a) We use the ratio test (the root test is also easy to use here):
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which, after solving yields 
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this series is 
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We immediately take care of the last part of this problem and find the sum of this series

over the interval of convergence: 
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(b)  Use the ratio test again: 
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(c) Use the root test: 
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nx = ∞ with the last equality being true for all x
except for x=0. Since the limit is never less than 1 for x not equal to 0, the
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