MATH 2730 Assignment 3
Due March 10, 2008, (Solutions)

1. Which of the following series converges absolutely, which converges conditionally
and which diverges? Justify your answers.
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converges, we have by the comparison test that 2 converges.
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Consequently the series in this problem converges absolutely.
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Z(—) converges, the original series converges absolutely.
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diverges (by the divergence test).
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series in this problem converges absolutely.

2. Find the interval of convergence for the following power series.
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For the series 2
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(in part a above), fund the sum of the series as a function on x.

(a) We use the ratio test (the root test is also easy to use here):
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which, after solving yields —8 <x <12. When x =12 the series becomes
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and so the series converges when
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this series is (-8 , 12).
We immediately take care of the last part of this problem and find the sum of this series
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(b) Use the ratio test again: thDZM = mM =0 and since that is always
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except for x=0. Since the limit is never less than 1 for x not equal to O, the

(¢) Use the root test: limy
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= nx| = oo with the last equality being true for all x

series Z(n)” x" converges only when x=0 and the interval of convergence is [0,0].
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