## MATH 2730 Assignment 3

## Due March 10, 2008, (Solutions)

1. Which of the following series converges absolutely, which converges conditionally and which diverges? Justify your answers.
(a) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(0.1)^{n}}{n}$
(b) $\quad \sum_{n=2}^{\infty} \frac{(-2)^{n+1}}{n+5^{n}}$
(c) $\quad \sum_{n=1}^{\infty}(-1)^{n+1} \sqrt[n]{10}$
(d) $\quad \sum_{n=2}^{\infty}(-1)^{n}\left(\frac{\ln n}{\ln \left(n^{2}\right)}\right)^{n}$
(a) $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}(0.1)^{n}}{n}\right|=\sum_{n=1}^{\infty} \frac{(0.1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n(10)^{n}}$ and since $\frac{1}{n(10)^{n}}<\frac{1}{(10)^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{(10)^{n}}$ converges, we have by the comparison test that $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}(0.1)^{n}}{n}\right|$ converges.
Consequently the series in this problem converges absolutely.
(b) $\sum_{n=2}^{\infty}\left|\frac{(-2)^{n+1}}{n+5^{n}}\right|=\sum_{n=2}^{\infty} \frac{2^{n+1}}{n+5^{n}}=2 \sum_{n=2}^{\infty} \frac{2^{n}}{n+5^{n}}$, since $\frac{2^{n}}{n+5^{n}}<\frac{2^{n}}{5^{n}}=\left(\frac{2}{5}\right)^{n}$ and since $\sum_{n=2}^{\infty}\left(\frac{2}{5}\right)^{n}$ converges, the original series converges absolutely.
(c) $\lim _{n \rightarrow \infty} \sqrt[n]{10}=\lim _{n \rightarrow \infty} 10^{\frac{1}{n}}=10^{0}=1$ and so $\lim _{n \rightarrow \infty}(-1)^{n+1} \sqrt[n]{10}$ is not 0 . Thereby the series diverges (by the divergence test).
(d) $\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{\ln n}{\ln \left(n^{2}\right)}\right)^{n}=\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{\ln n}{2 \ln n}\right)^{n}=\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{1}{2}\right)^{n}$ and since $\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n}$ converges, the series in this problem converges absolutely.
2. Find the interval of convergence for the following power series.
(a) $\quad \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$
(b) $\quad \sum_{n=0}^{\infty} \frac{(2 x+3)^{2 n+1}}{n!}$
(c) $\quad \sum_{n=1}^{\infty}(n)^{n} x^{n}$

For the series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$ (in part a above), fund the sum of the series as a function on x .
(a) We use the ratio test (the root test is also easy to use here):
$\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-2)^{n+1}}{10^{n+1}}}{\frac{(x-2)^{n}}{10^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)}{10}\right|=\left|\frac{(x-2)}{10}\right|$ and so the series converges when $\left|\frac{(x-2)}{10}\right|<1$,
which, after solving yields $-8<x<12$. When $x=12$ the series becomes $\sum_{n=0}^{\infty} \frac{(12-2)^{n}}{10^{n}}=\sum_{n=0}^{\infty} 1$ which obviously diverges, while when $x=-8$ the series becomes $\sum_{n=0}^{\infty} \frac{(-8-2)^{n}}{10^{n}}=\sum_{n=0}^{\infty}(-1)^{n}$ which also diverges. Consequently, the interval of convergence of this series is $(-8,12)$.
We immediately take care of the last part of this problem and find the sum of this series over the interval of convergence: $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}=\sum_{n=0}^{\infty}\left(\frac{x-2}{10}\right)^{n}=\frac{1}{1-\frac{x-2}{10}}$.
(b) Use the ratio test again: $\lim _{n \rightarrow \infty}\left|\frac{\frac{(2 x+3)^{2 n+3}}{(n+1)!}}{\frac{(2 x+3)^{2 n+1}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(2 x+3)^{2}}{n+1}\right|=0$ and since that is always less than 1 the series $\sum_{n=0}^{\infty} \frac{(2 x+3)^{2 n+1}}{n!}$ converges always and the interval of convergence if $(-\infty,+\infty)$.
(c) Use the root test: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|(n x)^{n}\right|}=\lim _{n \rightarrow \infty}|n x|=\infty$ with the last equality being true for all x except for $\mathrm{x}=0$. Since the limit is never less than 1 for x not equal to 0 , the series $\sum_{n=1}^{\infty}(n)^{n} x^{n}$ converges only when $\mathrm{x}=0$ and the interval of convergence is $[0,0]$.

