MATH 273 Assignment 1 Due February 1, 2008, in class

1. Use only the definition of the limit of a sequence to show that $\lim_{n\to\infty} \frac{1}{\ln(n+1)} = 0$.

2. Consider the sequence $\{a_n\}$ defined by $a_1 = 1$, $a_{n+1} = \frac{1+2a_n}{1+a_n}$, $n=1,2,3,\ldots$

- (a) Write down the first 5 members of that sequence.
- (b) Show that the sequence is bounded from above, say, by 100.
- (c) Use induction to show that the sequence increases.
- (d) Find the limit of that sequence.

3. Which of the following sequences converge, which diverge? If a sequence converges find the limit. (You may use the properties and theorems we have stated in class.)

(a)
$$a_n = 1 + (-1)^n$$

(b) $a_n = \binom{n+1}{1} 1$

(b)
$$a_n = \left(\frac{n+1}{2n}\right) \left(1 - \frac{1}{n}\right)$$

(c)
$$a_n = \frac{m(n+1)}{\sqrt{n}}$$

(d) $a_n = \left(\frac{1}{3}\right)^n + \frac{1}{\sqrt{2^n}}$

4. Which of the following series converge, which diverge? If a series converges, find its sum, and if a series diverges then provide a *short* explanation.

(a)
$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^n}$$

(b) $\sum_{n=0}^{\infty} \frac{2^{2n}}{3^n}$
(c) $\sum_{n=1}^{\infty} \frac{6}{(2n-1)(2n+1)}$

(d)
$$\sum_{n=0}^{\infty} \frac{n!}{1000^n}$$