136.272 Solutions

Assignment 4 (Sections 16.1-16.4)

1. [6 marks] Use the method of Lagrange multipliers to find and classify the extrema of the function f(x, y) = xy subject to the constraint $x^2 + y^2 - 4 = 0$.

Solution. Denote $F(x,y,\lambda) = f(x,y) + \lambda(x^2 + y^2 - 4) = xy + \lambda(x^2 + y^2 - 4)$. The equations $\frac{\partial F}{\partial x} = 0$, $\frac{\partial F}{\partial y} = 0$ and $\frac{\partial F}{\partial \lambda} = 0$ are $y + 2\lambda x = 0$, $x + 2\lambda y = 0$ and $x^2 + y^2 - 4 = 0$. Solving this gives 4 solutions for x and y: $(-\sqrt{2}, -\sqrt{2})$, $(\sqrt{2}, -\sqrt{2})$, $(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2}, \sqrt{2})$. We evaluate f(x,y) = xy at these 4 points to get $f(-\sqrt{2}, -\sqrt{2}) = 2$, $f(\sqrt{2}, -\sqrt{2}) = -2$, $f(-\sqrt{2}, \sqrt{2}) = -2$ and $f(\sqrt{2}, \sqrt{2}) = 2$. So, f attains its absolute minimum of -2 at $(\sqrt{2}, -\sqrt{2})$ and $(-\sqrt{2}, \sqrt{2})$, while it attains its absolute maximum of 2 at $(-\sqrt{2}, -\sqrt{2})$ and $(\sqrt{2}, \sqrt{2})$. [This is a consequence of the theorem regarding absolute extrema of functions over closed bounded domains, which is the case with the set of all points on the circle $x^2 + y^2 - 4 = 0$.]

2. [6 marks] Evaluate $\iint_D (4xy^3 - 4x^2y)dA$ where D is the region bounded by $y = -\sqrt{1-x^2}$, $y = \sqrt{1-x}$ and $y = \sqrt{1+x}$. Sketch D.

Solution. The parabolas $y = \sqrt{1-x}$ and $y = \sqrt{1+x}$ intersect at the point (0,1) (we get by solving the system of the two equations). The region D is shown in the picture below. We can describe it as follows: $-1 \le x \le 0$ and $-\sqrt{1-x^2} \le y \le \sqrt{1+x}$ for the part of D to the left of the y-axis, and $0 \le x \le 1$ and $-\sqrt{1-x^2} \le y \le \sqrt{1-x}$ for the part of D to the right of the y-axis.

So we have $\iint_{D} (4xy^{3} - 4x^{2}y) dA = \int_{-1}^{0} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1+x}} (4xy^{3} - 4x^{2}y) dy dx + \int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x}} (4xy^{3} - 4x^{2}y) dy dx =$ = (simple computations in between) = 1/5

3. [7 marks] Find the volume V of the solid S bounded by the xyplane, the cylinder $y = x^2$, and the planes z = x + 2y and y = 2x + 8. Sketch S.

The solid S is show in the (3D) picture to the right. It is bounded above by the plane z = x + 2y and below by the region B bounded by the curves $y = x^2$ and y = 2x + 8 in the xy-plane (shown in the picture below).

In the

15 12.5

> intersection of the curves bounded the

above region we have (after solving the system $y = x^2$, y = 2x + 8) that x=-2 (for the left hand side point) and x=4 (for the right hand side

point). So, the volume we want is $\iint_B (x+2y)dA = \int_{-2}^{\sqrt{2}} \int_{-2}^{2x+8} (x+2y)dydx = \text{(after some easy)}$ computation) 2484/5.

4. [6 marks] Use double integrals and polar coordinates to find the area in the first **quadrant** between the lemniscate $r^2 = \cos 2\theta$ and the four-leaf rose $r = \cos 2\theta$.

First we sketch the region D in the first quadrant bounded by the two given curves:

A small analysis shows that we get this region as θ changes from 0 to $\frac{\pi}{4}$. The semiline

that we show is there only to help us see that for a fixed angle θ the other coordinate r changes from the curve $r = \cos 2\theta$ (the curve on the boundary of the region D that is closer to the origin) to the curve $r = \sqrt{\cos 2\theta}$ (farther from the origin). Consequently, the

area of D is
$$\int_{0}^{\pi/4} \int_{\cos(2\theta)}^{\sqrt{\cos(2\theta)}} r dr \ d\theta$$
. Easy computation yields
$$\int_{0}^{\pi/4} \int_{\cos(2\theta)}^{\sqrt{\cos(2\theta)}} r dr \ d\theta = \frac{1}{4} - \frac{\pi}{16}$$
.

1 mark for free (to celebrate the end of the term)