136.272

Assignment 2 (Sections 14.3, 14.4, 15.1-15.2)

Posted: Oct.17 2005; handed Oct. 20, 2005. Due: Oct.24 2005 in class. (If you hand it in by Friday, Oct 21, you will get it back before the midterm.) Late assignments will not be accepted.

Show your work; providing answers without justifying them would not be sufficient.

- 1. [9 marks] A spiral curve is defined by the vector function $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$.
 - (a) Find the arc length function s(t) measured from the point (4,0,0).
 - (b) Reparametrize the curve in terms of the arc length function s measured from the point (4,0,0).
 - (c) Compute the curvature of that spiral curve at any moment in terms of s.
 - (d) Compute the curvature in terms of t directly from $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$.
 - (e) Find the equations of the normal and the osculating plane to the spiral at the point (4,0,0).

Solution.

[1.5] (a)
$$\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$$
 and so

$$|\vec{r}'(t)| = \sqrt{16\sin^2 t + 16\cos^2 t + 9} = \sqrt{25} = 5$$
. Consequently, $s(t) = \int_0^t 5du = 5t$. Note that the

lower limit of the integral is t=0 since at that moment we get the point (4,0,0).

[1.5] (b) If follows from (a) that
$$t = \frac{s}{5}$$
, so that $\vec{r}(s) = (4\cos\frac{s}{5}, 4\sin\frac{s}{5}, 3\frac{s}{5})$.

[2] (c)
$$\kappa(s) = \left| \frac{d\mathbf{T}}{ds} \right|$$
 where **T** is the unit tangent vector. So

$$\mathbf{T}(s) = \frac{\vec{r}'(s)}{|\vec{r}'(s)|} = \frac{\left(-\frac{4}{5}\sin\frac{s}{5}, \frac{4}{5}\cos\frac{s}{5}, \frac{3}{5}\right)}{1} = \left(-\frac{4}{5}\sin\frac{s}{5}, \frac{4}{5}\cos\frac{s}{5}, \frac{3}{5}\right). \text{ So}$$

$$\kappa(s) = \left| \frac{d\mathbf{T}}{ds} \right| = \left(-\frac{4}{25} \cos \frac{s}{5}, -\frac{4}{25} \sin \frac{s}{5}, 0 \right) = \frac{4}{25}.$$

[2] (d)
$$\kappa(t) = \left| \frac{\mathbf{T}'(t)}{\mathbf{r}'(t)} \right|$$
. We have already computer that $|\vec{r}'(t)| = 5$ and that

$$\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$$
. So, $\mathbf{T}(t) = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|} = \frac{(-4\sin t, 4\cos t, 3)}{5}$. So

$$\mathbf{T}'(t) = \frac{(-4\cos t, -4\sin t, 0)}{5}$$
. Consequently $|\mathbf{T}'(t)| = \frac{|(-4\cos t, -4\sin t, 0)|}{5} = \frac{4}{5}$. Finally

$$\kappa(t) = \left| \frac{\mathbf{T}'(t)}{\mathbf{\vec{r}}'(t)} \right| = \frac{4}{5} \cdot \frac{1}{5} = \frac{4}{25}$$
 as we have already found above.

[2] (e) $\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$ is tangent to the curve and normal to the normal plane. At t=0 (the moment we get the point (4,0,0)) we compute that $\vec{r}'(0) = (0,4,3)$. So, the equation of the normal plane through (4,0,0) is 0(x-4)+4(y-0)+3(z-0)=0.

For the osculating plane we need the bi-normal vector, or, for that matter, any vector that is parallel to the bi-normal vector. The vector $\mathbf{T}(0) \times \mathbf{T}'(0)$ is such. Using what we have computed above we find that $\mathbf{T}(0) = \frac{1}{5}(0,4,3)$ and $\mathbf{T}'(0) = \frac{1}{5}(-4,0,0)$. The cross product of these two is $\frac{1}{25}(0,-12,16)$. So, the bi-normal plane has the equation $0(x-4)-\frac{12}{25}(y-0)+\frac{16}{25}(z-0)=0$.

2. [4 marks] Find the position vector $\mathbf{r}(t)$ of the particle with acceleration $\mathbf{a}(t) = (\sin t, \cos t, 1)$, the initial velocity $\mathbf{v}(0) = (0,0,0)$ and initial position $\mathbf{r}(0) = (0,0,2)$. Where is the particle at the moment when $t = \pi$?

Solution. $\mathbf{v}(t) = \int \mathbf{a}(t)dt = \int (\sin t, \cos t, 1)dt = (-\cos t + c_1, \sin t + c_2, t + c_3)$. Since $\mathbf{v}(0) = (0,0,0)$ we have that $(-\cos 0 + c_1, \sin 0 + c_2, 0 + c_3) = (0,0,0)$ which yields $c_1 = 1$, $c_2 = 0 = c_3$, so that $\mathbf{v}(t) = (-\cos t + 1, \sin t, t)$. Further $\mathbf{r}(t) = \int \mathbf{v}(t)dt = \int (-\cos t + 1, \sin t, t)dt = (-\sin t + t + d_1, -\cos t + d_2, \frac{t^2}{2} + d_3)$. Since $\mathbf{r}(0) = (0,0,2)$, we have that $(-\sin 0 + 0 + d_1, -\cos 0 + d_2, \frac{0^2}{2} + d_3) = (0,0,2)$, from where we find that $d_1 = 0$, $d_2 = 1$ and $d_3 = 2$. So $\mathbf{r}(t) = (-\sin t + t, -\cos t + 1, \frac{t^2}{2} + 2)$. At $t = \pi$ we get $\mathbf{r}(\pi) = (-\sin \pi + \pi, -\cos \pi + 1, \frac{\pi^2}{2} + 2) = (\pi, 2, \frac{\pi^2}{2} + 2)$.

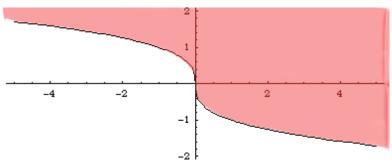
3. [6 marks] Determine **and sketch** (in the xy-plane) the domain of each of the following functions.

(a)
$$f(x,y) = \sqrt{x + y^3}$$

(b)
$$g(x,y) = \frac{x+y}{1-\sqrt{xy}}$$

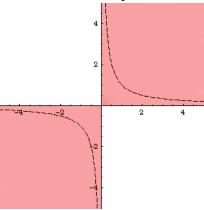
Solution

[3] (a) We must have $x + y^3 \ge 0$ or $y^3 \ge -x$. The points satisfying that inequality are in the shaded region below.



[3] (b) $g(x,y) = \frac{x+y}{1-\sqrt{xy}}$ is well defined when $xy \ge 0$ and when $1-\sqrt{xy} \ne 0$. The first

inequality happens for the points in the first and third quadrant (including the axes), while the second inequality happens for all points outside the curve $1 - \sqrt{xy} = 0$, that is, outside the hyperbola xy = 1. The domain is the shaded portion below, excluding the dotted lines.



[**6**] **4.** [6 marks]

- (a) Find the limit or show it does not exist: $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2}$
- (b) Find the limit or show it does not exist: $\lim_{(x,y)\to(1,-1)} \frac{x^2-1}{x^2+y^3}$

Solution.

[3] (a) Switch to polar coordinates

$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} = \lim_{r\to 0} \frac{1-\cos(r^2)}{r^2} \stackrel{L'Hospital}{=} \lim_{r\to 0} \frac{-2r\sin(r^2)}{2r} = 0$$

[3] (b) Along the curve y = -x (passing through (1,-1)) we have

$$\lim_{(x,y)\to(1,-1)} \frac{x^2-1}{x^2+y^3} = \lim_{x\to 1} \frac{x^2-1}{x^2+(-x)^3} = \lim_{x\to 1} \frac{(x-1)(x+1)}{x^2(1-x)} = \lim_{x\to 1} \frac{-(x+1)}{x^2} = -\frac{1}{2}.$$

On the other hand along the curve y = -1 (which also passes through (1,-1)), we have:

$$\lim_{\substack{(x,y)\to(1,-1)\\\text{along }y=-1}} \frac{x^2-1}{x^2+y^3} = \lim_{x\to 1} \frac{x^2-1}{x^2+(-1)^3} = \lim_{x\to 1} \frac{x^2-1}{x^2-1} = \lim_{x\to 1} 1 = 1.$$

Since we got two different answers when approaching (1,-1) along two different curves, we conclude that the original limit does not exist.