## Assignment 2 (Sections 14.3, 14.4, 15.1-15.2)

Posted: Oct. 17 2005; handed Oct. 19, 2005. Due: Oct. 242005 in class. (If you hand it in by Friday, Oct 21, you will get it back before the midterm.) Late assignments will not be accepted.
Show your work; providing answers without justifying them would not be sufficient.

1. [9 marks] A spiral curve is defined by the vector function $\vec{r}(t)=(4 \cos t, 4 \sin t, 3 t)$.
(a) Find the arc length function $s(t)$ measured from the point $(4,0,0)$.
(b) Reparametrize the curve in terms of the arc length function $s$ measured from the point $(4,0,0)$.
(c) Compute the curvature of that spiral curve at any moment in terms of $s$.
(d) Compute the curvature in terms of $t$ directly from $\vec{r}(t)=(4 \cos t, 4 \sin t, 3 t)$.
(e) Find the equations of the normal and the osculating plane to the spiral at the point $(4,0,0)$.
2. [4 marks] Find the position vector $\mathbf{r}(t)$ of the particle with acceleration $\mathbf{a}(t)=(\sin t, \cos t, 1)$, the initial velocity $\mathbf{v}(0)=(0,0,0)$ and initial position $\mathbf{r}(0)=(0,0,2)$. Where is the particle at the moment when $t=\pi$ ?
3. [6 marks] Determine and sketch (in the xy-plane) the domain of each of the following functions.
(a) $f(x, y)=\sqrt{x+y^{3}}$
(b) $g(x, y)=\frac{x+y}{1-\sqrt{x y}}$
[8] 4. [6 marks]
(a) Find the limit or show it does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$
(b) Find the limit or show it does not exist: $\lim _{(x, y) \rightarrow(1,-1)} \frac{x^{2}-1}{x^{2}+y^{3}}$
