Assignment 1 (Sections 13.1-13.7, 14.1-14.2)

Handed: Oct. 3, 2005. Due: Oct. 10, 2005 in class
Show your work (of course). Providing answers without justifying them will not be sufficient.

1. [5 marks] Find the equation of the plane which contains the point $(3,-1,5)$ and is perpendicular to the intersection of the planes $x-5 y+2 z=3$ and $4 x+y-z=2$.
2. [4 marks] Sketch the surface $x^{2}+z^{2}=-y$. Sketch at least two traces of that surface with planes of type $y=c$ (c various constants) and at least two traces with planes of type $z=c$ (c various constant).
3. [8 marks]
[1.5] (a) Find the rectangular coordinates of the point $(r, \theta, z)=\left(1, \frac{\pi}{4}, 1\right)$ given in cylindrical coordinates.
[1.5] (b) Find the rectangular coordinates of the point $(\rho, \theta, \phi)=\left(\frac{1}{2}, \frac{3 \pi}{2}, \frac{\pi}{4}\right)$ given in spherical coordinates.
[2] (c) Find the cylindrical coordinates of the point $(x, y, z)=(3,-3,4)$ given in rectangular coordinates.
[2] (d) Find the spherical coordinates of the point $(x, y, z)=(0,6,8)$ given in rectangular coordinates. Do not simplify here (specifically, instead of finding ϕ, find, say, $\cos \phi$).
[1] Plot all of the above points in a single coordinate system.
4. [8 marks].
[3] (a) Find all points on the curve $\overrightarrow{\mathbf{r}}(t)=\left(3 t^{6}, 4 t^{2}-1, t^{4}-8 t^{2}\right)$ where that curve has horizontal tangent lines.
[3] (b) Suppose l is any line perpendicular to the plane $x+y+z=2$. Find the angle between that line and the tangent vector to the curve $\overrightarrow{\mathbf{r}}(t)=\left(t^{2}-1, t^{3}+t, 3+t^{2}\right)$ when $t=-1$.
[2] (c) Find the unit tangent vector of the curve $x=t, z=t^{2}$ at the point $(2,4)$.
