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MATH 2720 Multivariable Calculus  
TEST 2 SOLUTIONS 

March 11, 2009 
(5:30-6:30, 205 Armes) 

 
NAME: ___________________  Student number: _______ 
 
 
(If you need more space use the backside and indicate that you have done so.) 
 
[9]     1. Consider the function z = x2 (1+ y2 ) . 
 (a) Find the slope of the line passing through the point (1,1,2) and tangent to the 
curve of intersection of the surface z = x2 (1+ y2 )  and the plane y = 1. 

 (b) Evaluate 
∂2z
∂x∂x

 and 
∂2z
∂y∂x

. 

Solution. (a) The slope of that line is the same as 
∂z
∂x
(1,1) . We compute: 

∂z
∂x
(x, y) = 2x(1+ y2 ) , so that 

∂z
∂x
(1,1) = 4 . 

 (b) ∂2z
∂x∂x

(x, y) = 2(1+ y2 ) ; 
∂2z
∂y∂x

= 4xy . 

 
 
[11] 2. A weather balloon moves along the curve x = t, y = 2t, z = t − t 2 , where t 
stands for the elapsed time measured in hours (and x, y and z are the coordinates of the 
balloon). The thermometer attached to the balloon gives the temperature of

T (x, y, z,t) = xy
1+ z

(1+ t)  (in degrees Celsius). Find the rate of change of the temperature 

at the time when .  
 
Solution. Here is the tree diagram in this case: 
 
The functions x, y, and z are given in the statement of the 
problem, while the last vertical line in the tree-diagram 
stands for the trivial function t on t ( t = t ). We now 
differentiate with respect to the bottom variable t:  
 
dT
dt

=
∂T
∂x

dx
dt

+
∂T
∂y

dy
dt

+
∂T
∂z

dz
dt

+
∂T
∂t

dt
dt

=

=
y

1+ z
(1+ t) + x

1+ z
(1+ t)2 − xy

(1+ z)2
(1+ t)(1− 2t) + xy

1+ z

 

 
Now, when t = 1 we compute from x = t, y = 2t, z = t − t 2  that x = 1, y = 2, z = 0 . We 

substitute that in the above expression for 
dT
dt

 to get that at that moment 

dT
dt

=
2
1
(1+1) + 21

1
(1+1) − 2

1
(1+1)(1− 2) + 2

1
= 4 + 4 + 4 + 2 = 14degrees hour . 
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[11] 3.  Consider the function f (x, y) = y2e2x . 
 (a) Find the directional derivative of this function at the point P(0,1)  and in the 

direction of the unit vector u = 1
2
, 3
2

⎛

⎝⎜
⎞

⎠⎟
. 

 (b) Find the unit vector in the direction in which f increases most rapidly at P and 
give the rate of change in that direction. Find the unit vector in the direction in which f 
decreases most rapidly at P and give the rate of change in that direction. 
 
Solution. We compute the gradient of f: ∇f = (2y2e2x ,2ye2x ) . At the given point P we 
have ∇f (0,1) = (2,2) . 

 (a) 
 

Du f (0,1) = ∇f (0,1)iu = (2,2)i(1
2
, 3
2
) = 1+ 3 . 

 (b) The function f increases most rapidly in the direction of the gradient vector 

∇f (0,1) = (2,2) . The unit vector in that direction is 
∇f (0,1)
|∇f (0,1) |

=
(2,2)
8

= ( 1
2
, 1
2
) . The 

rate of change in that direction is |∇f (0,1) | = 8 . The direction in which f decreases 

most rapidly is −∇f (0,1) = −(2,2) . The associated unit vector is −( 1
2
, 1
2
)  and the rate 

of change in that direction is − |∇f (0,1) | = − 8 . 
 
[12] 4. Find the equation of the tangent plane to the surface defined by 
xy + yz + xz = 11  at the point (1,2, 3) . 
 
Solution. The gradient vector of F(x, y, z) = xy + yz + xz  at the given point is normal to 
the tangent plane. We compute: ∇F(x, y, z) = (y + z, x + z, x + y) , and 
∇F(1,2, 3) = (5, 4, 3) . So the equation of the tangent plane is: 
5(x −1) + 4(y − 2) + 3(z − 3) = 0 . 
 
[11] 5. Find the point in the plane x − y + z = 1  that is closest to the point (−1,1,2) . 
Justify your answer by using the second (partial) derivative test.  
 
Solution. We are minimizing the distance between a point (x, y, z)  on the plane and the 

point (−1,1,2) . The formula is: d = (x +1)2 + (y −1)2 + (z − 2)2 . As explained in class, 
minimizing d is the same as minimizing d 2 = (x +1)2 + (y −1)2 + (z − 2)2 . Since the point 
(x, y, z)  is on the plane it satisfies the equation of the plane, so that z = 1− x + y . Hence 
we are minimizing 
d 2 = (x +1)2 + (y −1)2 + (1− x + y − 2)2 = (x +1)2 + (y −1)2 + (−1− x + y)2 . We call this 

expression f (x, y).  First we find the critical points, by solving 
∂f
∂x

= 0, ∂f
∂y

= 0 .  

∂f
∂x

= 2(x +1) − 2(−1− x + y) = 4x − 2y + 4 . 

 
∂f
∂y

= 2(y −1) + 2(−1− x + y) = −2x + 4y − 4 . 

Solving  gives x = −
2
3

 and y =
2
3

. 

To see what kind of point this is we use the second derivative test. 
fxx = 4 , fxy = −2 , fyx = −2 , fyy = 4 . We then compute D = 16 − 4 = 12 , so that D > 0 . 

Since fxx = 4 > 0  we have a local minimum. It follows from the nature of the problem 
that this is the absolute minimum of the function.  


