136.271
 Midterm Exam 1 SOLUTIONS
 February 272003

(60 minutes; justify your answers unless otherwise stated; no calculators)
Note: the marks for the questions add up to 65 , for 32.5% of your mark: the extra 2.5% are bonus.

1. [13]

(a) Finish off the following definition: A sequence $\left\{a_{n}\right\}$ converges to a number L (written $\lim _{n \rightarrow \infty} a_{n}=L$) if \qquad
(b) Use the (above) definition of a convergent sequence to show that $\lim _{n \rightarrow \infty}\left(\frac{2 n-1}{n+1}-1\right)=1$.

Solution.

(a) A sequence $\left\{a_{n}\right\}$ converges to a number L (written $\lim _{n \rightarrow \infty} a_{n}=L$) if for every $\varepsilon>0$, there is a number N, such that if $n>N$ then $\left|a_{n}-L\right|<\varepsilon$.
(b) Take any $\varepsilon>0$. Want to find N such that if $n>N$ then $\left|a_{n}-L\right|<\varepsilon$. The last inequality in case of the sequence in this problem becomes $\left|\frac{2 n-1}{n+1}-1-1\right|<\varepsilon$, which simplifies to $\left|\frac{-3}{n+1}\right|<\varepsilon$, which in turn simplifies to $\frac{3}{n+1}<\varepsilon$, which in turn means $\frac{3}{\varepsilon}<n+1$, or, finally $\frac{3}{\varepsilon}-1<n$. So we want to find a number N, such that if $n>N$ then $\frac{3}{\varepsilon}-1<n$. Choose N to be any number larger than $\frac{3}{\varepsilon}-1$ (that is, $N>\frac{3}{\varepsilon}-1$). Then, if $n>N$ then, $\frac{3}{\varepsilon}-1<n$, and so $n>\frac{3}{\varepsilon}-1$.
2. [22] All of the series in this question are positive. Determine if the given series converges or diverges by using any appropriate test.
(a) $\sum_{n=2}^{\infty} \frac{4^{n}(n+1)}{2^{2 n}(2 n-1)}$
(b) $\sum_{n=2}^{\infty} \frac{\sqrt{n+1}}{n^{2}-1}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Solution.

(a) Note that $\frac{4^{n}(n+1)}{2^{2 n}(2 n-1)}=\frac{4^{n}(n+1)}{4^{n}(2 n-1)}=\frac{(n+1)}{(2 n-1)}$ and that $\lim _{n \rightarrow \infty}\left(\frac{n+1}{2 n-1}\right)=\frac{1}{2}$. It follows from the divergence test that the series diverges.
(b) We use the limit comparison test with $\sum_{n=2}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ (which, as we know, converges).
$\lim _{n \rightarrow \infty}\left(\frac{\frac{\sqrt{n+1}}{n^{2}-1}}{\frac{1}{n^{\frac{3}{2}}}}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{\frac{3}{2}} \sqrt{n+1}}{n^{2}-1}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{\frac{3}{2}} \sqrt{n} \sqrt{1+\frac{1}{n}}}{n^{2}\left(1-\frac{1}{n^{2}}\right)}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sqrt{1+\frac{1}{n}}}{\left(1-\frac{1}{n^{2}}\right)}\right)=1$.
Since we got a finite number both series converge/diverge simultaneously. So, since $\sum_{n=2}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges, it follows that $\sum_{n=2}^{\infty} \frac{\sqrt{n+1}}{n^{2}-1}$ converges too.
(c) Consider the function $f(x)=\frac{1}{x \ln x}, x \geq 2$. Notice that $f(n), n \geq 2$, yields the general term of the series. Also notice that $f(x)$ is continuous, positive and decreasing (all of these are obvious). So, we can use the integral test.
$\int_{2}^{\infty} f(x) d x=\int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{a \rightarrow \infty} \int_{2}^{a} \frac{1}{x \ln x} d x \stackrel{u=\ln x}{=} \lim _{a \rightarrow \infty} \int_{x=2}^{x=a} \frac{1}{u} d u=\lim _{a \rightarrow \infty} \ln u l_{x=a}^{x=2}$
$=\left.\lim _{a \rightarrow \infty}(\ln \ln x)\right|_{2} ^{a}=\lim _{a \rightarrow \infty}(\ln \ln a-\ln \ln 2)=\infty$
So, the series diverges.
3.[17] Find the radius of convergence and the interval of convergence of the series
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(b) $\sum_{n=4}^{\infty} \frac{5^{n}(x-3)^{n}}{n-3}$

Solution.

(a)We use the ration test: $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}\left|=\lim _{n \rightarrow \infty} \frac{\frac{\left|x^{n+1}\right|}{(n+1)!}}{\frac{\left|x^{n}\right|}{n!}}=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0\right.$ and since this
is always less than 1 it follows that the series converges for all numbers x . So, the radius of convergence is infinity and the interval of convergence is $(-\infty,+\infty)$.
(b) Ratio test: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{5^{n+1}(x-3)^{n+1} \mid}{(n-2)}}{\frac{5^{n}\left|(x-3)^{n}\right|}{(n-3)}}=5|x-3| \lim _{n \rightarrow \infty} \frac{n-3}{n-2}=5|x-3|$. So, the series converges when $5|x-3|<1$. We solve this:
$5|x-3|<1 \Leftrightarrow|x-3|<\frac{1}{5} \Leftrightarrow-\frac{1}{5}<x-3<\frac{1}{5} \Leftrightarrow-\frac{1}{5}+3<x<\frac{1}{5}+3 \Leftrightarrow \frac{14}{5}<x<\frac{16}{5}$, where the symbol \Leftrightarrow should be read as "means the same as". We conclude that the radius of convergence is $\frac{1}{5}$. To establish the interval of convergence we need to take a look at the cases when $x=\frac{14}{5}$ and $x=\frac{16}{5}$.
(i) $x=\frac{14}{5}$. In this case the series becomes $\sum_{n=4}^{\infty} \frac{5^{n}\left(-\frac{1}{5}\right)^{n}}{n-3}=\sum_{n=4}^{\infty} \frac{(-1)^{n}}{n-3}$ which converges by the alternating series test.
(ii) $x=\frac{16}{5}$. Now we have $\sum_{n=4}^{\infty} \frac{5^{n}\left(\frac{1}{5}\right)^{n}}{n-3}=\sum_{n=4}^{\infty} \frac{1}{n-3}$ which diverges (by the limit comparison test with $\sum_{n=4}^{\infty} \frac{1}{n}$, say).
So, the interval of convergence is $\left[\frac{14}{5}, \frac{16}{5}\right.$).
4. [13] (a) Find the interval of convergence and the sum of (the closed form expression for) the series

$$
\sum_{n=0}^{\infty} 5 x^{3 n}=5+5 x^{3}+5 x^{6}+5 x^{9}+\ldots
$$

(b) Use (a) to compute the sum of the series $5-\frac{5}{8}+\frac{5}{64}-\frac{5}{512}+\ldots$.

Solution.

(a) For the interval of convergence we use the ration test again:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{5|x|^{3 n+3}}{5|x|^{3 n}}=|x|^{3}$. We solve $|x|^{3}<1$, to get $-1<x<1$. It is visible that the series diverges when $x=-1$ or $x=1$. So, the interval of convergence is $(-1,1)$.
Denote $\sum_{n=0}^{\infty} x^{n}=f(x)$. Observe that $\sum_{n=0}^{\infty} 5 x^{3 n}=5 \sum_{n=0}^{\infty} x^{3 n}=5 \sum_{n=0}^{\infty}\left(x^{3}\right)^{n}$ and since, obviously, $\sum_{n=0}^{\infty}\left(x^{3}\right)^{n}=f\left(x^{3}\right)$, it follows that $5 \sum_{n=0}^{\infty}\left(x^{3}\right)^{n}=5 f\left(x^{3}\right)$ and so $\sum_{n=0}^{\infty} 5 x^{3 n}=5 f\left(x^{3}\right)$. Since (geometric series) $\sum_{n=0}^{\infty} x^{n}=f(x)=\frac{1}{1-x}$, it follows that $5 f\left(x^{3}\right)=5 \frac{1}{1-x^{3}}$. All t his is true
over the common interval of convergence $(-1,1)$. So, summarizing, $\sum_{n=0}^{\infty} 5 x^{3 n}=5 f\left(x^{3}\right)=\frac{5}{1-x^{3}}$, for x in $(-1,1)$.
(b) $5-\frac{5}{8}+\frac{5}{64}-\frac{5}{512}+\ldots$ is just the value of the series in (a) when $x=-\frac{1}{2}$. So, by
(a), it is equal to $\overline{1-\left(-\frac{1}{2}\right)^{3}}$.

