
136.271
Midterm Exam 1

SOLUTIONS
February 27 2003

(60 minutes; justify your answers unless otherwise stated; no calculators)

Note: the marks for the questions add up to 65, for 32.5% of your mark: the
extra 2.5% are bonus.

1.  [13]
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Solution.
(a) A sequence an{ }  converges to a number L  (written lim

n
na L

Æ •
= ) if for every

e > 0, there is a number N, such that if n>N then a Ln - < e .

(b) Take any e > 0. Want to find N such that if n>N then a Ln - < e . The last

inequality in case of the sequence in this problem becomes 
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2. [22] All of the series in this question are positive. Determine if the given series converges
or diverges by using any appropriate test.
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(a) Note that 
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follows from the divergence test that the series diverges.

(b) We use the limit comparison test with 
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3

22 nn=
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Â  (which, as we know, converges).

lim lim lim
( )

lim
( )

n n n n

n

n

n

n n

n

n n
n

n
n

n

n
Æ • Æ • Æ • Æ •

+
-

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

=
+

-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

=
+

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=
+

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=

1
1

1
1

1

1
1

1
1

1
1

1
1

1
2

3

2

3

2

2

3

2

2
2 2

.

Since we got a finite number both series converge/diverge simultaneously. So, since 
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converges, it follows that 
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(c) Consider the function f x
x x

( )
ln

=
1

, x ≥ 2. Notice that f n( ) , n ≥ 2, yields the

general term of the series. Also notice that f x( ) is continuous, positive and decreasing (all
of these are obvious). So, we can use the integral test.
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So, the series diverges.

3.[17]  Find the radius of convergence and the interval of convergence of the series 
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Solution.

(a)We use the ration test: lim lim
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0 and since this

is always less than 1 it follows that the series converges for all numbers x. So, the radius of
convergence is infinity and the interval of convergence is ( , )-• +• .



(b) Ratio test: lim lim
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series converges when 5 3 1x - < . We solve this:
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x x x x x- < ¤ - < ¤ - < - < ¤ - + < < + ¤ < < , where

the symbol ¤  should be read as “means the same as”. We conclude that the radius of

convergence is 
1
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. To establish the interval of convergence we need to take a look at the

cases when x =
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by the alternating series test.
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4. [13]  (a) Find the interval of convergence and the sum of (the closed form expression
for) the series
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Solution.
(a) For the interval of convergence we use the ration test again:
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diverges when x = -1 or x = 1. So, the interval of convergence is ( , )-11 .
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over the common interval of convergence ( , )-11 . So, summarizing,
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