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Assignment 4: Section 9.8 and Uniform Convergence
(Due April 7 in class)

1.
(a) Use the binomial series to expand x x( )1 2- - .  Simplify your answer.

(b) Use part (a) to find the sum of the series 
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n
n 21=
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Â . (No marks if other methods

are used.)

Solution.  (a) According to the Binomial theorem, we have
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(b) We observe that 
n
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Â  is what we get if we put x =
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. So, we get the same

value if we substitute x =
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 in x x( )1 2- - , which is 
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2. Given the sequence of functions f xn ( ){ }  find the pointwise limit f x( )  and then show

that the sequence f xn ( ){ }  converges uniformly to f x( ) .

(a) f x
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 over the interval [0,1].
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 over the interval [1,2].

Solution.

(a) First we find the pointwise limit: lim ( ) lim lim
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over the interval [0,1], so its maximal value is attained at x=1; so
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the convergence is indeed uniform.
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used the L’Hospital’s rule in the middle equality (we have differentiated the denominator
and numerator separately with respect to n. So, f x( ) = 0 and we have the pointwise
limit.
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differentiate with respect to x): 
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always larger than 0, so that the function 
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maximal value is attained at x=2. We compute 
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convergence is uniform.

3. Given the sequence of functions f xn ( ){ }  find the pointwise limit f x( )  and then show

that the sequence f xn ( ){ }  does NOT converge uniformly to f x( ) .
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Solution.

(a) Follow the solution of 2(a) to the point when we found that f x f x
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goal now is to show that  max ( ) ( ) max
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infinity.  (Note the difference with respect to 2(a): the domain in this question is [ , )0 • ,
not [0,1] as it was in 2(a)). Choose x=n (this value is certainly in  [ , )0 • . For this choice

of x we have that 
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what we get when x=n, could not approach to 0 as n approaches infinity. So, the
convergence is NOT uniform.

(b) First the pointwise limit: lim ( ) lim lim
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L’Hospital again – the differentiation was done with respect to n.) So, f x( ) = 0. We

find that f x f x
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function over the interval [0,1].We differentiate with respect to x, to get
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convergence is not uniform, as claimed.


