(Due April 7 in class)
Note: show your work; a naked final answer is not worth anything.
1.
(a) Use the binomial series to expand
. Simplify your
answer.
(b) Use part (a) to find the sum of the series
. (No marks if other methods are used.)
2. Given the
sequence of functions
find the
pointwise limit
and then show
that the sequence
converges
uniformly to
.
(a)
over the interval [0,1].
(b)
over the interval [1,2].
3. Given the
sequence of functions
find the
pointwise limit
and then show
that the sequence
does NOT converge uniformly to
.
(a)
over the interval ![]()
(b)
over the interval [0,1].