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Assignment 3: Solutions

1. [6 marks] Find the sums of the following series.
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, where the last equality

is true because the first two terms are annihilated by differentiation anyway. Continuing,
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2. [5 marks] Find the Maclaurin series representation of the following functions.
(a) e x3

(b) sin2 x

Solution.
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3.  [6 marks] Find the sum of the series.
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(a) 
( )

( )!

( )

( )!
cos

-
=

- Ê
ËÁ

ˆ
¯̃

= =
=

•

=

•

Â Â1
6 2

1
6

2 6
3

2

2

2
0

2

0

n n

n
n

n
n

nn n

p
p

p

(b) 
x

n
x

x

n
x

x

n
x x e x

n

n

n

n

n

n

x
3 1

2

3

2

3

0

3 31 1
3

+

=

•

=

•

=

•

Â Â Â= =
( )

- -
Ê

Ë
ÁÁ

ˆ

¯
˜̃ = - -

! ! !
( ).

(c) Note first that if x=0 then the value of the series is 1. For x π 0 we do as follows:
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4.  [4 marks] Evaluate the following integrals as power series.
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Solution.

(a) Since sin
( )
( )!

t
t

n

n n

n

=
-

+

+

=

•

Â 1
2 1

2 1

0

 for every t, we have that sin( )
( )
( )!

t
t

n

n n

n

2
4 2

0

1
2 1

=
-

+

+

=

•

Â . So

sin( )
( )
( )!

( )
( )( )!

t dt
t

n
dt

x

n n

x n n

n

x n n

n

2

0

4 2

00

4 3

0

1
2 1

1
4 3 2 1Ú ÂÚ Â=

-
+

Ê
ËÁ

ˆ
¯̃

=
-
+ +

+

=

• +

=

•

(b) e dt
t

n
dt

x

n n
t

x n

n

x n

n

3

0

3

00

3 1

0 3 1Ú ÂÚ Â=
Ê
ËÁ

ˆ
¯̃

=
+=

• +

=

•

! ( ) !
.

5. [4 marks] Show that the Lagrange remainder in the Taylor’s formula for the following
functions tends to 0 as n tends to infinity, thus establishing that the functions are equal to
their power series representations.

(a) cos4x

(b) e x-2



Solution.
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 and by an old result (Section 9.1), the limit of the

term on the right-hand side is 0. So the same is true for the left-hand side, so that
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, where y is either c or x

depending on the two cases just listed above. In both of these two cases e y-2  is a fixed
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