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Assignment 3: Solutions

1. [6 marks] Find the sums of the following series.

(a) in(n -Dx", |x|<1.
n=2
= n'—n
(b) ; 2/1 *
Solution.
(a) Zn(n Dx"=x En(n Dx"?=x Z( ) E(x")” , where the last equality
n=2 n=0

is true because the flI‘St two terms are annlhllated by differentiation anyway. Continuing,

we have xzi(x”)”:x{ix") =x2(L) :2x2( 1 3).
n=0
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(b) 2 is clearly the value of the function in (a) when x = 5 and so, by (a), it is
1’ 1
equal to 2(5j N

2. [5 marks] Find the Maclaurin series representation of the following functions.

(a) ™
(b) sin’ x
Solution.
oo 3 n o 3” n
* it follows that ¢** = Z( Yo 2 al .
n=0 ‘ n=0 I’l! n=0 n‘

(b) sin’*x = %(l —cos2x)= %— %cos2x is an old identity. We know that

o _1 n_2n oo _1 n 2 2n o _1 n22n 2n

cosx = %, so that cos2x = Z( 22( ))’C) = 2( )(2 )'x . Consequently
n=0 n). n=0 n). n=0

1 1 1 22n 2n 1 22n 2n

———Co0S2x = 2( ) and so sin’ x——— Z( ) .

2 2 e 2n)! 2n)!



3. [6 marks] Find the sum of the series.
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Solution.
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0 35 - ( ]—x(e 1),

(¢) Note first that if x=0 then the value of the series is 1. For x #0 we do as follows:

oo oo n+ o n

x n
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4. [4 marks] Evaluate the following integrals as power series.

(a) j sin(72)dr

(b) je”dr

Solution.
1 nt2n+1 1 nt4n+2

(a) Since sint= g(@}z—l)' for every ¢, we have that sin(#%) = %((Z)T)'
X n 4n+2 oo ln 4n+3
Jsin(tz)dt—J[z( DAL j ) g
7 o im0 —@n+3)2n+1!

o t3n oo x3n+1
b dt= —ldt= ) ——.
( )Je !(20 n!j ;(3n+1)n!

5. [4 marks] Show that the Lagrange remainder in the Taylor’s formula for the following
functions tends to O as n tends to infinity, thus establishing that the functions are equal to
their power series representations.

(a) cos4dx

(b) e—2x



Solution.
~ f(n+1)(z)
@ R.M=" ")

f(x)=cos4x, the n-th derivative of this function is some of 4" sinx, 4" cosx, —4" sinx
f (x)| <4". Consequently

n+l

(x—c)"*' for some z between c and x. Since here we have that

and -4" cos x, so that in all cases

4"y — ™ 3 l4(x—c)
(m+1)!  (n+1)!

term on the right-hand side is 0. So the same is true for the left-hand side, so that

limR (x)=0 as wanted.

")
(n+1)!
F7(x)=(=2)"e™.So, f"™M(z)=(-2)""e**, with z between c and x. There are two

possibilities: either ¢ < x (in which case ¢ < z< x) or ¢ > x (in which case x<z<c).In

the former case e < ¢, while in the latter case ¢ > < e ™. So,

f(n+l)(Z) _ n+l -2z |x _ c|n+l 2n+le—2y

(n+1)! (n+1)!

depending on the two cases just listed above. In both of these two cases e~
n+l 2y

R, (x)| < and by an old result (Section 9.1), the limit of the

(b) Start with R (x)= (x—c)"*" again. In this case f(x)=e ", so that

(x—c)"" |x - c|"+l , where y is either ¢ or x

R,(x)|=

’ is a fixed

- - 2 _ n+l
number independent of . So, 0 < lirn|Rn (x)| < lim lx — | l=e™ 11m|(x—c)
n—yeo n—e (n+1)! noe (n+1)!

and, using the same old theorem we have used in the part (a) above, we conclude that
0 < lim|R,(x)|<0, so that lim|R, (x)|=0, so that lim R, (x) =0 as wanted.




