Assignment 3: Sections 9.5 (the part on differentiation and integration of series), 9.6 and 9.7 and 9.8

(Due March 21 in class)
Note: show your work; a naked final answer is not worth anything.

1. [6 marks] Find the sums of the following series.
(a) $\sum_{n=2}^{\infty} n(n-1) x^{n},|x|<1$.
(b) $\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}$.
2. [5 marks] Find the Maclaurin series representation of the following functions.
(a) $e^{3 x}$
(b) $\sin ^{2} x$
3. [6 marks] Find the sum of the series.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
(b) $\sum_{n=2}^{\infty} \frac{x^{3 n+1}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}(n+1)!}$
4. [4 marks] Evaluate the following integrals as power series.
(a) $\int_{0}^{x} \sin \left(t^{2}\right) d t$
(b) $\int_{0}^{x} e^{t^{3}} d t$
5. [4 marks] Show that the Lagrange remainder in the Taylor's formula for the following functions tends to 0 as n tends to infinity, thus establishing that the functions are equal to their power series representations.
(a) $\cos 4 x$
(b) $e^{-2 x}$
