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Assignment 2 (Sections 9.3, 9.4 and 9.5)
SOLUTIONS

1. [9 marks]
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check that the Integral Test is applicable before you apply it.
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Solution.
(a) Consider the function f x xe x( ) = - 2

for x ≥ 1. Note first that f n( )  gives the general
term of the series. The function is obviously positive and continuous. We now show it is
decreasing by showing that the first derivative is less than 0 (for x ≥ 1):
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2 1 2 2  and this is indeed less than 0 since e x- 2

 is
always positive, while 1 2 2- x  is negative when x ≥ 1. So, the integral test can be used.
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lim lim lim , where we have

used the substitution u x= 2  to evaluate the integral (the second equality). Since the
integral converges, so does the series.
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 (this is true since 1 2+ £n n  for n ≥ 1).  Since

we know (theorem) that 
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2. [9 marks] Check if the following series is absolutely convergent, conditionally
convergent or divergent.
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Solution.
(a) We use the Ratio test to check for absolute convergence.
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 and since this is less

than 1 we conclude that the series converges absolutely.

(b) Use the Root test: lim lim lim
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than 1 the series converges absolutely.
(c) We check for absolute convergence by applying the limit comparison test on
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simultaneously. Consequently 
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absolutely.
To check for (conditional) convergence we use the Alternating series test.

(i) a
n

n+ =
+

1 23

1

2
 is obviously less than a

n
n =

+
1

123

(ii) lim
n nÆ • +

=
1

1
0

23
.

Consequently, by the Alternating Series Test, the series converges. So, it converges
conditionally.

3.  [7 marks] Find the center of convergence, the radius of convergence, and the interval
of convergence of the following series.
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Solution.
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converges absolutely if x < 1 and it diverges if x > 1.
It remains to be seen what happens when x = 1, i.e., when x = 1 or x = -1.

Case 1. x = 1. In this case the series becomes n
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 and this obviously diverges

(Divergence Test).

Case 2. x = -1. In this case the series becomes n
n

n

=

•

Â -
1

1( )  and this also diverges

(Divergence Test).
So, the interval of convergence is (-1,1), the radius of convergence is 0 and the

center of convergence is 0.
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symbol ¤  reads “is equivalent to” and stands for “means the same as”.

Now we take a look what happens when 
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Case 1. x = -3 2/ . The series becomes 
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Case 2. x = 5 2/ . The series becomes 
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Conclusion: the interval of convergence is (-3/2, 5/2), the radius of convergence is 2 and
the center of convergence is 1/2.




