# Assignment 2 (Sections 9.3, 9.4 and 9.5) DUE February 24, MONDAY CLASS <br> TWO CORRECTIONS EMPHASIZED IN RED 

## 1. [9 marks]

(a) Use the Integral Test to test if the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges. Do not forget to check that the Integral Test is applicable before you apply it.
(b) Use the Comparison Test to determine if $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ converges.
(c) Use the Limit Comparison Test to determine if $\sum_{n=1}^{\infty} \frac{n^{2}+\sqrt{n}}{n^{4}+\sqrt{n}}$ converges.
2. [9 marks] Check if the following series is absolutely convergent, conditionally convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{(n+1)(-5)^{n}}{n 3^{2 n}}$
(b) $\sum_{n=2}^{\infty}\left(\frac{n+1}{n^{2}-n}\right)^{n} \quad(\mathrm{n}=1$ in the sum in the handout now changed to $\mathrm{n}=2)$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n^{2}+1}}$
3. [7 marks] Find the center of convergence, the radius of convergence, and the interval of convergence of the following series.
(a) $\sum_{n=1}^{\infty} n x^{n}$
(b) $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(2 x-1)^{n} \quad(2 x-1$ is up in the numerator)

