Assignment 1 (Sections 9.1 and 9.2)

1. [6 marks] Show that $\lim _{n \rightarrow \infty} \frac{3 n-1}{4 n+2}=\frac{3}{4}$ by using the definition of a convergent sequence and no other properties of sequences.
2. [7 marks] Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=\sqrt{2}$ and $a_{n}=\sqrt{2 a_{n-1}}, n>1$.
(a) Compute a_{5}.
(b) Use mathematical induction to show that the sequence $\left\{a_{n}\right\}$ is bounded from above (Hint: show that $a_{n}<10$, say.)
(c) (Optional) Use mathematical induction to show that the sequence $\left\{a_{n}\right\}$ increases.
(d) Use (b) and (c) above and refer to a theorem given in class (and in the textbook) to conclude that $\left\{a_{n}\right\}$ converges.
(e) Find $\lim _{n \rightarrow \infty} a_{n}$ (Hint: see how we have done that part in the similar examples done in class.)
3. [6 marks] Use what was covered in section 9.1 to evaluate the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n}}{\sqrt{n}+1}$
(b) $\lim _{n \rightarrow \infty} \frac{1+2^{n}}{e^{n}}$
4. [6 marks] Find the sum if the series converges; otherwise show it diverges.
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{2^{n-1}}+\frac{2}{3^{n-1}}\right)$
(b) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{1+n^{2}}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
