136.271

Assignment 3: Section 9.8 and Uniform Convergence

(Due April 7 in class)

Note: show your work; a naked final answer is not worth anything.

1.

(a) Use the binomial series to expand $x(1-x)^{-2}$. Simplify your answer.

(b) Use part (a) to find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$. (No marks if other methods are used.)

2. Given the sequence of functions $\{f_n(x)\}$ find the pointwise limit f(x) and then show that the sequence $\{f_n(x)\}$ converges uniformly to f(x).

(a)
$$f_n(x) = \frac{n+x}{n}$$
 over the interval [0,1].
(b) $f_n(x) = \frac{\ln(1+nx)}{n}$ over the interval [1,2].

3. Given the sequence of functions $\{f_n(x)\}$ find the pointwise limit f(x) and then show that the sequence $\{f_n(x)\}$ does **NOT** converge uniformly to f(x).

(a)
$$f_n(x) = \frac{n+x}{n}$$
 over the interval $[0,\infty)$
(b) $f_n(x) = \frac{n}{e^{nx^2}}$ over the interval $[0,1]$.