Assignment 3: Section 9.8 and Uniform Convergence

(Due April 7 in class)
Note: show your work; a naked final answer is not worth anything.
1.
(a) Use the binomial series to expand $x(1-x)^{-2}$. Simplify your answer.
(b) Use part (a) to find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$. (No marks if other methods are used.)
2. Given the sequence of functions $\left\{f_{n}(x)\right\}$ find the pointwise limit $f(x)$ and then show that the sequence $\left\{f_{n}(x)\right\}$ converges uniformly to $f(x)$.
(a) $f_{n}(x)=\frac{n+x}{n}$ over the interval $[0,1]$.
(b) $f_{n}(x)=\frac{\ln (1+n x)}{n}$ over the interval $[1,2]$.
3. Given the sequence of functions $\left\{f_{n}(x)\right\}$ find the pointwise limit $f(x)$ and then show that the sequence $\left\{f_{n}(x)\right\}$ does NOT converge uniformly to $f(x)$.
(a) $f_{n}(x)=\frac{n+x}{n}$ over the interval $[0, \infty)$
(b) $f_{n}(x)=\frac{n}{e^{n x^{2}}}$ over the interval $[0,1]$.

