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Assignment 1 Solutions
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and no other properties of sequences.
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what we wanted.

2. [7 marks] Consider the sequence an{ }  defined by a1 2=  and a a nn n= >-2 11, .
(a) Compute a5.
(b) Use mathematical induction to show that the sequence an{ }  is bounded from

above (Hint: show that an < 10, say.)
(c) (Optional) Use mathematical induction to show that the sequence an{ }

increases.
(d) Use (b) and (c) above and refer to a theorem given in class (and in the

textbook) to conclude that an{ }  converges.



(e) Find lim
n

naÆ •
 (Hint: see how we have done that part in the similar examples

done in class.)

Solution.

(a) a a a a a5 4 3 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2= = = = = .

(b) We use mathematical induction to show that for every n, an < 10.

Step 1. Is a1 10< ? Yes: 2 10< .
Step 2. Suppose an < 10. We want to show that an+ <1 10. We examine our goal

again: an+ <1 10 means 2 10an < , means 2 100an < , means an < 50. So, we want to
show that if a1 10<  then an < 50! But that is obvious.

(c) Step 1. Is a a1 2£ ? Yes, because 2 2 2< .
Step 2. Suppose a an n£ +1. We want to show now that that would imply

a an n+ +£1 2 . Again we examine our target: a an n+ +£1 2  means 2 2 1a an n£ + , means
2 2 1a an n£ + , means a an n£ +1. So we need to show that a an n£ +1 (our first assumption)
implies a an n£ +1. But this could not me more obvious.

(d) Parts (b) and (c) show that the sequence is bounded and increasing. The theorem in
class (page 523 in text) implies that it is a convergent sequence.

(e) So we have that lim
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= = =2 2 2 2 . So 2L L= . We solve this to get L = 2 or

L = 0. The latter is obviously excluded, since the sequence increases and so the limit
must be larger then all of the terms. We conclude that L = 2.

3.  [6 marks] Use what was covered in section 9.1 to evaluate the following limits.
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4. [6 marks] Find the sum if the series converges; otherwise show it diverges.

(a) 
1

2
2

31 1
1

n n
n

- -
=

•

+Ê
ËÁ

ˆ
¯̃Â

(b) 
n

nn 1 2
1 +=

•

Â

(c) 
1

21 n nn ( )+=

•

Â

Solution.
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(and so, it is not equal to 0 – see the divergence test in 9.2).
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where I have put the middle parenthesis just for emphasis. Now cancel the terms that
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