136.271

Assignment 1 Solutions
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1. [6 marks] Show that lim = — by using the definition of a convergent sequence

n—e4p +
and no other properties of sequences.

Solution. Take an arbitrary £>0. We want to show that there is an N such that if n>N
then
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We fist examine the last inequality:
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— —|< &, means < €, means < €, means
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larger that O (since n is positive), so the absolute value will not affect it. On the other
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We continue: ———— < € means — < (4n+2), means — — 2 < 4n, which finally
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< €. Now the denominator of the fraction in the absolute value is obviously
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and thus < € means
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means 2(4— — 2) < n.So, to summarize all of this, < € means the same as
E

1(10
l E—2 < n.So, we need to find an N, such that if n>N then — ——2)<n (i.e.
4\ 4e 4\ 4e
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n> 2(4— - 2)). That should now be visible: take N to be any number larger than
£

1(10 1(10
—| =—=21]). Now, if n>N, then (by the preceding sentence) n > —(— - 2) and we got
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what we wanted.

2. [7 marks] Consider the sequence {an} defined by a, = /2 and a,=+2a, , n>1.

(a) Compute as.

(b) Use mathematical induction to show that the sequence {an} is bounded from
above (Hint: show that a, <10, say.)

(c) (Optional) Use mathematical induction to show that the sequence {an}
increases.

(d) Use (b) and (c) above and refer to a theorem given in class (and in the
textbook) to conclude that {an} converges.



(e) Find lima, (Hint: see how we have done that part in the similar examples
n—oo

done in class.)

Solution.
(@) a, =2a, =2\2a, =+22\2a, = 22,22a, =2y2y212+2 .

(b) We use mathematical induction to show that for every n, a, <10.

Step 1.Is a,<10? Yes: /2 <10.

Step 2. Suppose a, <10. We want to show that a,,, <10. We examine our goal

n+l
again: a,,, <10 means /2a, <10, means 2a, <100, means a, <50. So, we want to
show that if @, <10 then a, < 50! But that is obvious.

(c) Step 1.Is g, < a,? Yes, because V2 <242

Step 2. Suppose a, < a,,,. We want to show now that that would imply

n+l*
a,, <a,,,.Again we examine our target: a,,, < a,,, means /2a, < 2a,,, , means
2a, <2a,, ,means a, < a,, .So we need to show that a, < a,,, (our first assumption)
implies a, < a,,. But this could not me more obvious.

n+l"*

(d) Parts (b) and (c) show that the sequence is bounded and increasing. The theorem in
class (page 523 in text) implies that it is a convergent sequence.

(e) So we have that lima, exists. Denote it by L. So lima, = L. Consequently

n—o0 n—oo

lima,,, = L too. So (using the definition of a,,,), we have that lim/2a, = L. But
lim\/2an = /lim2a, = [2lima, =~2L.So v2L = L. We solve this to get L=2 or

L =0.The latter is obviously excluded, since the sequence increases and so the limit
must be larger then all of the terms. We conclude that L=2.

3. [6 marks] Use what was covered in section 9.1 to evaluate the following limits.
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(a) lim Vn
n—eqln +1
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(b) lim—
Solution.
1
3 3 3 1
(a) lim—n1 = limln— = lim% =lim———==0.
" n*+1 n3(n6+n_ 3] (n6+n_ 3)
1+2" 1 2" 1 2" 2\
(b) lim——= lim[—n+—nj =lim— +lim—=0+ lim(—J =0+0=0
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4. [6 marks] Find the sum if the series converges; otherwise show it diverges.
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Solution.
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dlverges because hm = lim = lim

b
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(and so, it is not equal to 0 — see the divergence test in 9.2).

A
(c¢) First find A and B such that

B
: multiply both sides by
nn+2) n (m+2)

n(n+2) to get 1= A(n+2)+ Bn,rearrange to get 1= (A + B)n +2A equate the

+B=0 1
coefficients in front of the powers of n to get oA 1 ,and solve to get A= 5 and
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look at the partial sum:
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where I have put the middle parenthesis just for emphasis. Now cancel the terms that

could be cancelled to get that s = %(prl_L_ 1 j Take the limit of this:

2 n+l n+2
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is in

3

= . Since (by definition) the sum
j 4 (by ) 2 n(n +2)
fact 1i it follows that i ! = g
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