136.271 Midterm Exam

2004, February 27, 4:30-5:30

Solutions

1. [2] (a) State the definition of the limit of a sequence. That is, what does it mean to say that the limit of a sequence $\{a_n\}$ is the number L?

[6] (b) Use only the definition of the limit of a sequence to show that $\lim_{n \to \infty} \frac{1-n}{n-2} = -1$. Solution. Suppose $\varepsilon > 0$. We are searching for N>0, such that if n > N, than $\left|\frac{1-n}{n-2} - (-1)\right| < \varepsilon$. We first take a look at the last inequality and simplify it: $\left|\frac{1-n}{n-2} - (-1)\right| < \varepsilon \iff \left|\frac{1-n}{n-2} + 1\right| < \varepsilon \iff \left|\frac{1-n+n-2}{n-2}\right| < \varepsilon \iff$ $\Leftrightarrow \left|\frac{-1}{n-2}\right| < \varepsilon \iff \frac{1}{n-2} < \varepsilon \iff \frac{1}{\varepsilon} < n-2 \iff \frac{1}{\varepsilon} + 2 < n$

Now choose any N such that $\frac{1}{\varepsilon} + 2 < N$. It is now visible that if n > N, than $\frac{1}{\varepsilon} + 2 < n$ and so the inequality that we have analyzed above holds.

2. The following series do converge. Find their sums.

$$\begin{bmatrix} 6 \end{bmatrix} (\mathbf{a}) \sum_{n=1}^{\infty} \frac{3^n}{5^{n-1}}$$
$$\sum_{n=1}^{\infty} \frac{3^n}{5^{n-1}} = 3 \sum_{n=1}^{\infty} \frac{3^{n-1}}{5^{n-1}} = 3 \sum_{n=0}^{\infty} \frac{3^n}{5^n} = 3 \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n = 3 \frac{1}{1 - \frac{3}{5}}$$

[6] (**b**)
$$\sum_{n=3}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Consider the partial sums associated to the $\sum_{n=3}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right):$ $s_n = \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1}\right) + \left(\frac{1}{n-1} - \frac{1}{n}\right).$ After (a lot of) cancellation, we see that $s_n = \frac{1}{3} - \frac{1}{n}$ and so $\lim_{n \to \infty} s_n = \frac{1}{3}$. Consequently, the sum of the series is also $\frac{1}{3}$.

3. In the following questions you are required to use specific tests. No marks will be given if you use other tests.

[5] (a) Use the **limit comparison test** to check if the series $\sum_{n=1}^{\infty} \frac{n+1}{n(1+n^{\frac{2}{3}})}$ converges.

Compare with
$$\sum_{n=1}^{\infty} \frac{n}{n(n^{2/3})} = \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$$
: $\lim_{n \to \infty} \frac{\frac{n+1}{n(1+n^{2/3})}}{\frac{1}{n^{2/3}}} = \lim_{n \to \infty} \frac{(n+1)n^{2/3}}{n(1+n^{2/3})} = 1$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$

diverges and by the limit comparison test, the original series $\sum_{n=1}^{\infty} \frac{n+1}{n(1+n^{2/3})}$ also diverges.

[5] (b) Use the alternating series test to check if the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ converges.

It is obvious that $\lim_{n \to \infty} \frac{1}{\ln(n+1)} = 0$ and that $\frac{1}{\ln(n+2)} < \frac{1}{\ln(n+1)}$. So the alternating test is applicable and it tells us that the series converges.

[5] (c) First check that **the integral test** can be used, and then use it to check if the series $\sum_{n=1}^{\infty} \frac{1}{e^n}$ converges.

We take a look at the function $f(x) = \frac{1}{e^x}$ for $x \ge 1$: it is obviously positive, continuous and decreasing. So, the integral test can be applied. $\int_{1}^{\infty} e^{-x} dx = \lim_{a \to \infty} \int_{1}^{a} e^{-x} dx = \lim_{a \to \infty} (-e^{-x}) \Big|_{1}^{a} = \lim_{a \to \infty} (-e^{-a} + e^{-1}) = \lim_{a \to \infty} (-\frac{1}{e^a} + e^{-1}) = e^{-1}.$

So the improper integral converges, and thereby the series converges too.

4. [7] Check if the following series converges absolutely, converges conditionally or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^3 + 1}}.$

First we check if the series converges absolutely, that is if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$ converges. Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ converges (by a theorem) and since $\frac{1}{\sqrt{n^3 + 1}} < \frac{1}{\sqrt{n^3}}$ it follows by the comparison test that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$ converges. So, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^3 + 1}}$ converges absolutely.

5. (bonus [5]) Let a_n and b_n be positive numbers for all n. Prove that if $\sum_{n=1}^{\infty} a_n$ converges and if $\lim_{n \to \infty} b_n = 0$ than $\sum_{n=1}^{\infty} a_n b_n$ also converges.

The assumption $\lim_{n \to \infty} b_n = 0$ implies that for some point on, say for n>M, the members of the sequence are also less than 1. So, $a_n b_n < a_n(1) = a_n$ when n>M. So, by the comparison test (which is applicable since everything here is positive), we have that since $\sum_{n=1}^{\infty} a_n$ converges, so does $\sum_{n=1}^{\infty} a_n b_n$.