136.271 Midterm Exam

2004, February 27, 4:30-5:30

Solutions

1. [2] (a) State the definition of the limit of a sequence. That is, what does it mean to say that the limit of a sequence $\left\{a_{n}\right\}$ is the number L ?
[6] (b) Use only the definition of the limit of a sequence to show that $\lim _{n \rightarrow \infty} \frac{1-n}{n-2}=-1$.
Solution. Suppose $\varepsilon>0$. We are searching for $\mathrm{N}>0$, such that if $n>N$, than $\left|\frac{1-n}{n-2}-(-1)\right|<\varepsilon$. We first take a look at the last inequality and simplify it:

$$
\begin{aligned}
& \left|\frac{1-n}{n-2}-(-1)\right|<\varepsilon \Leftrightarrow\left|\frac{1-n}{n-2}+1\right|<\varepsilon \Leftrightarrow\left|\frac{1-n+n-2}{n-2}\right|<\varepsilon \Leftrightarrow \\
& \Leftrightarrow\left|\frac{-1}{n-2}\right|<\varepsilon \Leftrightarrow \frac{1}{n-2}<\varepsilon \Leftrightarrow \frac{1}{\varepsilon}<n-2 \Leftrightarrow \frac{1}{\varepsilon}+2<n
\end{aligned}
$$

Now choose any N such that $\frac{1}{\varepsilon}+2<N$. It is now visible that if $n>N$, than $\frac{1}{\varepsilon}+2<n$ and so the inequality that we have analyzed above holds.
2. The following series do converge. Find their sums.
[6] (a) $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n-1}}$
$\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n-1}}=3 \sum_{n=1}^{\infty} \frac{3^{n-1}}{5^{n-1}}=3 \sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}}=3 \sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}=3 \frac{1}{1-\frac{3}{5}}$
[6] (b) $\sum_{n=3}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$
Consider the partial sums associated to the $\sum_{n=3}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$:
$s_{n}=\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots+\left(\frac{1}{n-2}-\frac{1}{n-1}\right)+\left(\frac{1}{n-1}-\frac{1}{n}\right)$. After (a lot of $)$ cancellation, we see that $s_{n}=\frac{1}{3}-\frac{1}{n}$ and so $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{3}$. Consequently, the sum of the series is also $\frac{1}{3}$.
3. In the following questions you are required to use specific tests. No marks will be given if you use other tests.
[5] (a) Use the limit comparison test to check if the series $\sum_{n=1}^{\infty} \frac{n+1}{n\left(1+n^{2 / 3}\right)}$ converges.

Compare with $\sum_{n=1}^{\infty} \frac{n}{n\left(n^{2 / 3}\right)}=\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}: \lim _{n \rightarrow \infty} \frac{\frac{n+1}{n\left(1+n^{2 / 3}\right)}}{\frac{1}{n^{2 / 3}}}=\lim _{n \rightarrow \infty} \frac{(n+1) n^{2 / 3}}{n\left(1+n^{2 / 3}\right)}=1$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}$ diverges and by the limit comparison test, the original series $\sum_{n=1}^{\infty} \frac{n+1}{n\left(1+n^{2 / 3}\right)}$ also diverges.
[5] (b) Use the alternating series test to check if the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}$ converges.
It is obvious that $\lim _{n \rightarrow \infty} \frac{1}{\ln (n+1)}=0$ and that $\frac{1}{\ln (n+2)}<\frac{1}{\ln (n+1)}$. So the alternating test is applicable and it tells us that the series converges.
[5] (c) First check that the integral test can be used, and then use it to check if the series $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ converges.

We take a look at the function $f(x)=\frac{1}{e^{x}}$ for $x \geq 1$: it is obviously positive, continuous and decreasing. So, the integral test can be applied.
$\int_{1}^{\infty} e^{-x} d x=\lim _{a \rightarrow \infty} \int_{1}^{a} e^{-x} d x=\left.\lim _{a \rightarrow \infty}\left(-e^{-x}\right)\right|_{1} ^{a}=\lim _{a \rightarrow \infty}\left(-e^{-a}+e^{-1}\right)=\lim _{a \rightarrow \infty}\left(-\frac{1}{e^{a}}+e^{-1}\right)=e^{-1}$.
So the improper integral converges, and thereby the series converges too.
4. [7] Check if the following series converges absolutely, converges conditionally or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}}$.

First we check if the series converges absolutely, that is if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}$ converges. Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$ converges (by a theorem) and since $\frac{1}{\sqrt{n^{3}+1}}<\frac{1}{\sqrt{n^{3}}}$ it follows by the comparison test that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}$ converges. So, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}}$ converges absolutely.
5. (bonus [5]) Let a_{n} and b_{n} be positive numbers for all n. Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges and if $\lim _{n \rightarrow \infty} b_{n}=0$ than $\sum_{n=1}^{\infty} a_{n} b_{n}$ also converges.

The assumption $\lim _{n \rightarrow \infty} b_{n}=0$ implies that for some point on, say for $\mathrm{n}>\mathrm{M}$, the members of the sequence are also less than 1 . So, $a_{n} b_{n}<a_{n}(1)=a_{n}$ when $\mathrm{n}>\mathrm{M}$. So, by the comparison test (which is applicable since everything here is positive), we have that since $\sum_{n=1}^{\infty} a_{n}$ converges, so does $\sum_{n=1}^{\infty} a_{n} b_{n}$.

