
136.271 Midterm Exam

2004, February 27, 4:30-5:30
Solutions

1. [2] (a) State the definition of the limit of a sequence. That is, what does it mean to say
that the limit of a sequence 

€ 

an{ } is the number L?

    [6] (b) Use only the definition of the limit of a sequence to show that 

€ 

lim
n→∞

1− n
n − 2

= −1.

Solution. Suppose 

€ 

ε>0. We are searching for N>0, such that if 

€ 

n > N , than

€ 

1− n
n − 2

− (−1) < ε . We first take a look at the last inequality and simplify it:

€ 

1− n
n − 2

− (−1) < ε  ⇔  1− n
n − 2

+1 < ε  ⇔  1− n + n − 2
n − 2

< ε  ⇔  

⇔  −1
n − 2

< ε  ⇔  1
n − 2

< ε  ⇔  1
ε

< n − 2  ⇔  1
ε

+ 2 < n

Now choose any N such that 

€ 

 1
ε

+ 2 < N . It is now visible that if 

€ 

n > N , than 

€ 

 1
ε

+ 2 < n

and so the inequality that we have analyzed above holds.

2. The following series do converge. Find their sums.

    [6] (a) 

€ 

3n

5n−1n=1

∞

∑

€ 

3n

5n−1n=1

∞

∑ = 3 3n−1

5n−1n=1

∞

∑ = 3 3n

5nn= 0

∞

∑ = 3 3
5
 

 
 
 

 
 

n= 0

∞

∑
n

= 3 1

1− 3
5

    [6] (b) 

€ 

1
n
−

1
n +1

 

 
 

 

 
 

n= 3

∞

∑

Consider the partial sums associated to the

€ 

1
n
−

1
n +1

 

 
 

 

 
 

n= 3

∞

∑ :

€ 

sn =
1
3
−
1
4

 

 
 

 

 
 +

1
4
−
1
5

 

 
 

 

 
 +

1
5
−
1
6

 

 
 

 

 
 + ...+

1
n − 2

−
1
n −1

 

 
 

 

 
 +

1
n −1

−
1
n

 

 
 

 

 
 . After (a lot of)

cancellation, we see that 

€ 

sn =
1
3
−
1
n

 and so 

€ 

lim
n→∞

sn =
1
3

. Consequently, the sum of the

series is also 

€ 

1
3

.

3.   In the following questions you are required to use specific tests. No marks will be
given if you use other tests.

    [5] (a) Use the limit comparison test to check if the series 

€ 

n +1
n(1+ n

2
3 )n=1

∞

∑  converges.



Compare with 

€ 

n
n(n

2
3 )n=1

∞

∑ =
1
n
2
3n=1

∞

∑ : 

€ 

lim
n→∞

n +1
n(1+ n

2
3 )

1
n
2
3

= lim
n→∞

(n +1)n
2
3

n(1+ n
2
3 )

=1. Since 

€ 

1
n
2
3n=1

∞

∑

diverges and by the limit comparison test, the original series 

€ 

n +1
n(1+ n

2
3 )n=1

∞

∑  also diverges.

    [5] (b) Use the alternating series test to check if the series 

€ 

(−1)n

ln(n +1)n= 2

∞

∑  converges.

It is obvious that 

€ 

lim
n→∞

1
ln(n +1)

= 0  and that 

€ 

1
ln(n + 2)

<
1

ln(n +1)
. So the alternating test is

applicable and it tells us that the series converges.

    [5] (c) First check that the integral test can be used, and then use it to check if the

series 

€ 

1
enn=1

∞

∑  converges.

We take a look at the function 

€ 

f (x) =
1
ex

 for 

€ 

x ≥1: it is obviously positive, continuous

and decreasing. So, the integral test can be applied.

€ 

e−xdx
1

∞

∫ = lim
a→∞

e−xdx
1

a

∫ = lim
a→∞
(−e−x )

a
1

= lim
a→∞
(−e−a + e−1) = lim

a→∞
(− 1
ea

+ e−1) = e−1.

So the improper integral converges, and thereby the series converges too.

4. [7] Check if the following series converges absolutely, converges conditionally or

diverges: 

€ 

(−1)n

n3 +1n=1

∞

∑ .

First we check if the series converges absolutely, that is if the series 

€ 

1
n3 +1n=1

∞

∑

converges. Since 

€ 

1
n3n=1

∞

∑  converges (by a theorem) and since 

€ 

1
n3 +1

<
1
n3

 it follows

by the comparison test that the series 

€ 

1
n3 +1n=1

∞

∑  converges. So, 

€ 

(−1)n

n3 +1n=1

∞

∑  converges

absolutely.

5. (bonus [5]) Let 

€ 

an  and 

€ 

bn  be positive numbers for all n. Prove that if 

€ 

an
n=1

∞

∑  converges

and if 

€ 

lim
n→∞

bn = 0 than 

€ 

anbn
n=1

∞

∑  also converges.

The assumption 

€ 

lim
n→∞

bn = 0 implies that for some point on, say for n>M, the members of
the sequence are also less than 1. So, 

€ 

anbn < an (1) = an  when n>M. So, by the comparison

test (which is applicable since everything here is positive), we have that since 

€ 

an
n=1

∞

∑

converges, so does 

€ 

anbn
n=1

∞

∑ .


