136.271 Midterm Exam
2004, February 27, 4:30-5:30
Solutions

1. [2] (a) State the definition of the limit of a sequence. That is, what does it mean to say
that the limit of a sequence {an} is the number L?
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[6] (b) Use only the definition of the limit of a sequence to show that lim
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Solution. Suppose £>0. We are searching for N>0, such that if n > N, than
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< €. We first take a look at the last inequality and simplify it:
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Now choose any N such that 1 +2 < N. Itis now visible that if n > N, than 1 +2<n
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and so the inequality that we have analyzed above holds.

2. The following series do converge. Find their sums.
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cancellation, we see that s, = 1.1 and so lims, = % Consequently, the sum of the
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Consider the partial sums associated to the E(— -
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3. In the following questions you are required to use specific tests. No marks will be
given if you use other tests.
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[5] (a) Use the limit comparison test to check if the series E—y
n=1 n(l +n 3)
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diverges and by the limit comparison test, the original series E
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also diverges.
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[5] (b) Use the alternating series test to check if the series E converges.
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It is obvious that lim =0 and that < . So the alternating test is
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applicable and it tells us that the series converges.

[5] (c) First check that the integral test can be used, and then use it to check if the
series E—n converges.
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We take a look at the function f(x) = ix for x =1: it is obviously positive, continuous
e
and decreasing. So, the integral test can be applied.
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So the improper integral converges, and thereby the series converges too.

4. [7] Check if the following series converges absolutely, converges conditionally or
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diverges: .
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First we check if the series converges absolutely, that is if the series E
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converges. Since converges (by a theorem) and since < it follows
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by the comparison test that the series E converges. So, E— converges
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absolutely.

S. (bonus [5]) Let a, and b, be positive numbers for all n. Prove that if Ean converges
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and if limb, =0 than Ea b, also converges.
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The assumption limb, =0 implies that for some point on, say for n>M, the members of
the sequence are also less than 1. So, a,b, < a,(l) = a, when n>M. So, by the comparison

test (which is applicable since everything here is positive), we have that since E a,
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converges, so does Eanbn .
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