
136.271 Assignment 4

Solutions

1. Find the Maclaurin series representation for the following functions and identify the
interval of convergence of the series.

(a)

€ 

e2x
2
−1

x 2

(b)

€ 

sin x cos x   (Hint: start with 

€ 

sin2x )

(c)

€ 

tan−1(3x)

(a) We know that 

€ 

ex =
xn

n!n= 0

∞

∑  for all numbers x. So 

€ 

e2x
2

=
(2x 2)n

n!n= 0

∞

∑ =
2n x 2n

n!n= 0

∞

∑  and thus

€ 

e2x 2
−1

x 2 =
1
x 2

2n x 2n

n!n= 0

∞

∑  −1
 

 
 

 

 
 =

1
x 2

2n x 2n

n!n=1

∞

∑
 

 
 

 

 
  where in the last equality we have cancelled

the term we get for n=0 with the –1). Further, 

€ 

1
x 2

2n x 2n

n!n=1

∞

∑ =
2n x 2n−2

n!n=1

∞

∑  (after

multiplying each term by 

€ 

1
x 2

). So 

€ 

e2x
2
−1

x 2
=

2n x 2n−2

n!n=1

∞

∑  and the representation is true for

every number x except x=0.

(b) Recall that 

€ 

sin2x = 2sin x cos x  so that our starting function 

€ 

sin x cos x  is the same as

€ 

1
2
sin2x . We know that 

€ 

sin x =
(−1)n x 2n+1

(2n +1)!n= 0

∞

∑  for every number x, so that

€ 

1
2
sin2x =

1
2

(−1)n (2x)2n+1

(2n +1)!n= 0

∞

∑ =
(−1)n22n x 2n+1

(2n +1)!n= 0

∞

∑ .The representation is true for every

number x.

(c) We have that 

€ 

(tan−1 x ′ ) =
1

1+ x 2 . On the other hand, since 

€ 

1
1− x

= xn
n= 0

∞

∑  for x in (-1,1),

it follows that 

€ 

1
1+ x 2

= (−x 2)n
n= 0

∞

∑ = (−1)n x 2n
n= 0

∞

∑  over the same interval (-1,1).

Consequently, 

€ 

tan−1 x =
1

1+ x 2
dx + c =∫ (−1)n x 2n

n= 0

∞

∑∫ + c . Within the interval of

convergence we can integrate term by term, so that



€ 

tan−1 x = (−1)n x 2n
n= 0

∞

∑
 

 
 

 

 
 ∫ dx + c = (−1)n x 2ndx∫

n= 0

∞

∑ + c = (−1)n x 2n+1

2n +1n= 0

∞

∑ + c . Since

€ 

tan−1 0 = 0 and since the series 

€ 

(−1)n x 2n+1

2n +1n= 0

∞

∑  is also 0 when x=0, it follows that the

constant c is 0. So, 

€ 

tan−1 x = (−1)n x 2n+1

2n +1n= 0

∞

∑  for x in the interval (-1,1), and so

€ 

tan−1 3x = (−1)n (3x)
2n+1

2n +1n= 0

∞

∑ = (−1)n 3
2n+1x 2n+1

2n +1n= 0

∞

∑  for 

€ 

3x  in (-1,1), i.e., for x in the interval

€ 

(− 1
3
,1
3
) .

2.  Find the Taylor series representation of the function 

€ 

ln x  centered at a=3.

Taylor’s formula tells us that 

€ 

f (x) =
f (n )(a)
n !

(x − a)n
n= 0

∞

∑ . In this question 

€ 

f (x) = ln x  and

a=3.  We compute: 

€ 

′ f (x) =
1
x

, 

€ 

′ ′ f (x) = −
1
x 2

, 

€ 

′ ′ ′ f (x) =
2 ⋅1
x 3

, 

€ 

f (4 )(x) = −
3 ⋅ 2 ⋅1
x 4

, and, in

general, 

€ 

f (n )(x) = (−1)n+1 (n −1)!
xn

. So, 

€ 

f (n )(3) = (−1)n+1 (n −1)!
3n

 (with 

€ 

f (0)(3) = f (3) = ln3)

and, after substituting this in the Taylor’s formula, we get

€ 

f (x) = ln3+
(−1)n+1 (n −1)!

3n
n !

(x − 3)n
n=1

∞

∑ . We simplify this a bit to get our final answer:

€ 

f (x) = ln3+
(−1)n+1

3n n
(x − 3)n

n=1

∞

∑ .

3. Use multiplication of series to find the first three nonzero terms of the Maclaurin series
representation of the function 

€ 

ln(2 + x) ⋅ tan−1 x 2( ).

First, 

€ 

ln(1+ x) =
1

1+ x
dx∫ + c = (−1)n xn

n= 0

∞

∑
 

 
 

 

 
 dx∫ + c , where we have used the fact that

€ 

1
1− x

= xn
n= 0

∞

∑  for –1<x<1.  Continuing,

€ 

(−1)n xn
n=1

∞

∑
 

 
 

 

 
 dx∫ + c = (−1)n xndx∫

n= 0

∞

∑  + c = (−1)n x
n+1

n +1n= 0

∞

∑  + c . So that

€ 

ln(1+ x) = (−1)n x
n+1

n +1n= 0

∞

∑  + c . Substituting x=0, we get that c=0. So

€ 

ln(1+ x) = (−1)n x
n+1

n +1n= 0

∞

∑  . Now, 

€ 

ln(2 + x) = ln[2(1+ x /2)]= ln2 + ln(1+ x /2)  and since



€ 

ln(1+ x) = (−1)n x
n+1

n +1n= 0

∞

∑  , we have that

€ 

ln(1+ x /2) = (−1)n (x /2)n+1

n +1n= 0

∞

∑  = (−1)n xn+1

2n+1(n +1)n= 0

∞

∑ . Summarizing,

€ 

ln(2 + x) = ln2 + ln(1+ x /2) = ln2 + (−1)n xn+1

2n+1(n +1)n= 0

∞

∑ .

Now we pay attention to 

€ 

tan−1 x 2( ) . Since 

€ 

tan−1 x = (−1)n x 2n+1

2n +1n= 0

∞

∑ , we get that

€ 

tan−1 x 2( ) = (−1)n
x 2( )

2n+1

2n +1n= 0

∞

∑ = (−1)n x
4n+2

2n +1n= 0

∞

∑ .

Finally we take a look at the product: 

€ 

ln(2 + x) ⋅ tan−1 x 2( ):

€ 

ln(2 + x) ⋅ tan−1 x 2( ) = ln2 + (−1)n xn+1

2n+1(n +1)n= 0

∞

∑
 

 
 

 

 
 ⋅ (−1)n x

4n+2

2n +1n= 0

∞

∑
 

 
 

 

 
 =

= ln2 +
x
2
−
x 2

23
+ ...

 

 
 

 

 
 x 2 −

x 6

3
+ ...

 

 
 

 

 
 = (ln2)x 2 −

x 3

2
−
x 4

23
+ ...

4.  Use power series to evaluate 

€ 

cos(t 2)dt
0

x

∫ .

Since 

€ 

cos t =
(−1)n t 2n

(2n)!n= 0

∞

∑ , we have that 

€ 

cos t 2 =
(−1)n t 2( )

2n

(2n)!n= 0

∞

∑ =
(−1)n t 4n

(2n)!n= 0

∞

∑ . So,

€ 

cos(t 2)dt
0

x

∫ =
(−1)n t 4n

(2n)!n= 0

∞

∑ dt
0

x

∫ =
(−1)n t 4n

(2n)!
dt

0

x

∫
n= 0

∞

∑ =
(−1)n x 4n+1

(4n +1)(2n)!n= 0

∞

∑ .

5. 
a) Use binomial series to find the power series representation of the function

€ 

1
4 + x 2

. Simplify your answer.

(b) Use your answer in (a) to compute the sum of 

€ 

(−1)n (1)(3) ⋅ ⋅ ⋅ (2n −1)
25n+1n!n=1

∞

∑ .



(a) We have: 

€ 

1
4 + x 2

=
1

2 1+ x
2( )

2
=
1
2
1+ x

2( )
2 

 
  

 
 
− 12

. Now we take a look at the

associated binomial series 

€ 

(1+ x)−
1
2 =1+

−
1
2

 

 
 

 

 
 −

1
2
−1

 

 
 

 

 
 −

1
2
− 2

 

 
 

 

 
 ... − 1

2
− n +1

 

 
 

 

 
 

n!
xn

n=1

∞

∑ .

Consequently, 

€ 

1+ x
2( )

2 
 
  

 
 
− 12

=1+
−
1
2

 

 
 

 

 
 −

1
2
−1

 

 
 

 

 
 −

1
2
− 2

 

 
 

 

 
 ... − 1

2
− n +1

 

 
 

 

 
 

n!
x
2
 

 
 
 

 
 
2 

 
  

 

 
  

n

n=1

∞

∑ . So

€ 

1
2
1+ x

2( )
2 

 
  

 
 
− 12

=
1
2

+
1
2

−
1
2

 

 
 

 

 
 −

1
2
−1

 

 
 

 

 
 −

1
2
− 2

 

 
 

 

 
 ... − 1

2
− n +1

 

 
 

 

 
 

n!
x
2
 

 
 
 

 
 
2 

 
  

 

 
  

n

n=1

∞

∑  and we start

simplifying:

€ 

1
2
1+ x

2( )
2 

 
  

 
 
− 12

=
1
2

+
1
2

(−1)n 1( ) 1+ 2( ) 1+ 4( )... 1+ 2n − 2( )
2n n!

x 2n

22nn=1

∞

∑ =
1
2

+
(−1)n 1( ) 3( ) 5( )... 2n −1( )

23n+1n!
x 2n

n=1

∞

∑

(b) We observe that we get 

€ 

(−1)n (1)(3) ⋅ ⋅ ⋅ (2n −1)
25n+1n!n=1

∞

∑  by substituting 

€ 

x =
1
2

 in

€ 

(−1)n 1( ) 3( ) 5( )... 2n −1( )
23n+1n!

x 2n
n=1

∞

∑ . But, from part (a) we find that

€ 

1
2
1+ x

2( )
2 

 
  

 
 
− 12

−
1
2

=
(−1)n 1( ) 3( ) 5( )... 2n −1( )

23n+1n!
x 2n

n=1

∞

∑ , and so, after substituting 

€ 

x =
1
2

, we get

€ 

(−1)n (1)(3) ⋅ ⋅ ⋅ (2n −1)
25n+1n!n=1

∞

∑ =
1
2
1+ 1 2

2
 
 
  

 
 
2 

 
 

 

 
 

− 12

−
1
2

.


