136.271 Assignment 4 Solutions

1. Find the Maclaurin series representation for the following functions and identify the interval of convergence of the series.

(a)
$$\frac{e^{2x^2}-1}{x^2}$$

(b) $\sin x \cos x$ (Hint: start with $\sin 2x$)

(c)
$$\tan^{-1}(3x)$$

(a) We know that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all numbers x. So $e^{2x^2} = \sum_{n=0}^{\infty} \frac{(2x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!}$ and thus $\frac{e^{2x^2} - 1}{x^2} = \frac{1}{x^2} \left(\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!} - 1 \right) = \frac{1}{x^2} \left(\sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n!} \right)$ where in the last equality we have cancelled the term we get for n=0 with the -1). Further, $\frac{1}{x^2} \sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n!} = \sum_{n=1}^{\infty} \frac{2^n x^{2n-2}}{n!}$ (after multiplying each term by $\frac{1}{x^2}$). So $\frac{e^{2x^2} - 1}{x^2} = \sum_{n=1}^{\infty} \frac{2^n x^{2n-2}}{n!}$ and the representation is true for every number x except x=0.

(b) Recall that $\sin 2x = 2\sin x \cos x$ so that our starting function $\sin x \cos x$ is the same as $\frac{1}{2}\sin 2x$. We know that $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ for every number x, so that $\frac{1}{2}\sin 2x = \frac{1}{2}\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n+1}}{(2n+1)!}$. The representation is true for every number x.

(c) We have that $(\tan^{-1} x)' = \frac{1}{1+x^2}$. On the other hand, since $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for x in (-1,1), it follows that $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ over the same interval (-1,1). Consequently, $\tan^{-1} x = \int \frac{1}{1+x^2} dx + c = \int \sum_{n=0}^{\infty} (-1)^n x^{2n} + c$. Within the interval of convergence we can integrate term by term, so that

$$\tan^{-1} x = \int \left(\sum_{n=0}^{\infty} (-1)^n x^{2n} \right) dx + c = \sum_{n=0}^{\infty} \int (-1)^n x^{2n} dx + c = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + c.$$
 Since
$$\tan^{-1} 0 = 0 \text{ and since the series } \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \text{ is also 0 when } x=0, \text{ it follows that the}$$

$$\operatorname{constant} c \text{ is 0. So, } \tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \text{ for } x \text{ in the interval } (-1,1), \text{ and so}$$

$$\tan^{-1} 3x = \sum_{n=0}^{\infty} (-1)^n \frac{(3x)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{2n+1}}{2n+1} \text{ for } 3x \text{ in } (-1,1), \text{ i.e., for } x \text{ in the interval}$$

$$(-\frac{1}{3}, \frac{1}{3}).$$

2. Find the Taylor series representation of the function $\ln x$ centered at a=3.

Taylor's formula tells us that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$. In this question $f(x) = \ln x$ and a=3. We compute: $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2 \cdot 1}{x^3}$, $f^{(4)}(x) = -\frac{3 \cdot 2 \cdot 1}{x^4}$, and, in general, $f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{x^n}$. So, $f^{(n)}(3) = (-1)^{n+1} \frac{(n-1)!}{3^n}$ (with $f^{(0)}(3) = f(3) = \ln 3$) and, after substituting this in the Taylor's formula, we get $f(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \frac{(n-1)!}{3^n}}{n!} (x-3)^n$. We simplify this a bit to get our final answer: $f(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \frac{(x-3)^n}{3^n}}{3^n} (x-3)^n$.

3. Use multiplication of series to find the first three nonzero terms of the Maclaurin series representation of the function $\ln(2 + x) \cdot \tan^{-1}(x^2)$.

First,
$$\ln(1+x) = \int \frac{1}{1+x} dx + c = \int \left(\sum_{n=0}^{\infty} (-1)^n x^n\right) dx + c$$
, where we have used the fact that
 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for $-1 < x < 1$. Continuing,
 $\int \left(\sum_{n=1}^{\infty} (-1)^n x^n\right) dx + c = \sum_{n=0}^{\infty} \int (-1)^n x^n dx + c = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + c$. So that
 $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + c$. Substituting $x=0$, we get that $c=0$. So
 $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$. Now, $\ln(2+x) = \ln[2(1+x/2)] = \ln 2 + \ln(1+x/2)$ and since

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} , \text{ we have that}$$

$$\ln(1+x/2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x/2)^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)}. \text{ Summarizing,}$$

$$\ln(2+x) = \ln 2 + \ln(1+x/2) = \ln 2 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)}.$$
Now we pay attention to $\tan^{-1}(x^2)$. Since $\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \text{ we get that}$

$$\tan^{-1}(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}.$$
Finally we take a look at the product: $\ln(2+x) \cdot \tan^{-1}(x^2)$:
$$\ln(2+x) \cdot \tan^{-1}(x^2) = \left[\ln 2 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{2^{n+1}(n+1)}\right] \cdot \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}\right] = \left[\ln 2 + \frac{x}{2} - \frac{x^2}{2^3} + \dots\right] \left[x^2 - \frac{x^6}{3} + \dots\right] = (\ln 2)x^2 - \frac{x^3}{2} - \frac{x^4}{2^3} + \dots$$

4. Use power series to evaluate
$$\int_{0}^{x} \cos(t^2) dt$$
.

Since
$$\cos t = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!}$$
, we have that $\cos t^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (t^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!}$. So,
 $\int_0^x \cos(t^2) dt = \int_0^x \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^{\infty} \int_0^x \frac{(-1)^n t^{4n}}{(2n)!} dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}.$

5.

a) Use binomial series to find the power series representation of the function $\frac{1}{\sqrt{4+x^2}}$. Simplify your answer.

(**b**) Use your answer in (a) to compute the sum of $\sum_{n=1}^{\infty} (-1)^n \frac{(1)(3)\cdots(2n-1)}{2^{5n+1}n!}.$

(a) We have:
$$\frac{1}{\sqrt{4 + x^2}} = \frac{1}{2\sqrt{1 + (x'_2)^2}} = \frac{1}{2} \left(1 + (x'_2)^2 \right)^{-\frac{1}{2}}$$
. Now we take a look at the associated binomial series $(1 + x)^{-\frac{1}{2}} = 1 + \sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2} - 1\right)\left(-\frac{1}{2} - 2\right) \cdot \left(-\frac{1}{2} - n + 1\right)}{n!} x^n$. Consequently, $\left(1 + (x'_2)^2\right)^{-\frac{1}{2}} = 1 + \sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2} - 1\right)\left(-\frac{1}{2} - 2\right) \cdot \left(-\frac{1}{2} - n + 1\right)}{n!} \left(\left(\frac{x}{2}\right)^2\right)^n$. So $\frac{1}{2} \left(1 + (x'_2)^2\right)^{-\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2} - 1\right)\left(-\frac{1}{2} - 2\right) \cdot \left(-\frac{1}{2} - n + 1\right)}{n!} \left(\left(\frac{x}{2}\right)^2\right)^n$ and we start simplifying: $\frac{1}{2} \left(1 + (x'_2)^2\right)^{-\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\left(-1\right)^n \left(1\right)\left(1 + 2\right)\left(1 + 4\right) \dots \left(1 + 2n - 2\right)}{2^n n!} \frac{x^{2n}}{2^{2n}} = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\left(-1\right)^n \left(1\right)(3)(5) \dots (2n - 1)}{2^{3n+1} n!} x^{2n}$ (b) We observe that we get $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{\left(1\right)(3) \dots \left(2n - 1\right)}{2^{5n+1} n!}$ by substituting $x = \frac{1}{2}$ in $\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \left(1\right)(3)(5) \dots (2n - 1)}{2^{3n+1} n!} x^{2n}$. But, from part (a) we find that $\frac{1}{2} \left(1 + \left(\frac{x'_2}{2}\right)^2\right)^{-\frac{1}{2}} - \frac{1}{2} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^n \left(1\right)(3)(5) \dots (2n - 1)}{2^{3n+1} n!} x^{2n}$, and so, after substituting $x = \frac{1}{2}$, we get $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{\left(1\right)(3) \dots \left(2n - 1\right)}{2^{3n+1} n!} = \frac{1}{2} \left(1 + \left(\frac{1}{2}\right)^2\right)^{-\frac{1}{2}} - \frac{1}{2}$.