136.271 Assignment 3

Due March 13, 2004, (Solutions)

1. Which of the following series converges absolutely, which converges conditionally and which diverges? Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (0.1)^n}{n}$$
(b)
$$\sum_{n=2}^{\infty} \frac{(-2)^{n+1}}{n+5^n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(-2)^{n+1}}{n+5^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sqrt[n]{10}$$

(d)
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{\ln n}{\ln(n^2)} \right)^n$$

(a)
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1} (0.1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{(0.1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n (10)^n}$$
 and since $\frac{1}{n (10)^n} < \frac{1}{(10)^n}$ and $\sum_{n=1}^{\infty} \frac{1}{(10)^n}$

converges, we have by the comparison test that $\sum_{n=0}^{\infty} \left| \frac{(-1)^{n+1}(0.1)^n}{n} \right|$ converges.

Consequently the series in this problem converges absolutely.

(b)
$$\sum_{n=2}^{\infty} \left| \frac{(-2)^{n+1}}{n+5^n} \right| = \sum_{n=2}^{\infty} \frac{2^{n+1}}{n+5^n} = 2 \sum_{n=2}^{\infty} \frac{2^n}{n+5^n}, \text{ since } \frac{2^n}{n+5^n} < \frac{2^n}{5^n} = \left(\frac{2}{5}\right)^n \text{ and since }$$

 $\sum_{i=1}^{\infty} \left(\frac{2}{5}\right)^{i}$ converges, the original series converges absolutely.

(c)
$$\lim_{n\to\infty} \sqrt[n]{10} = \lim_{n\to\infty} 10^{\frac{1}{n}} = 10^0 = 1$$
 and so $\lim_{n\to\infty} (-1)^{n+1} \sqrt[n]{10}$ is not 0. Thereby the series diverges (by the divergence test).

(d)
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{\ln n}{\ln(n^2)}\right)^n = \sum_{n=2}^{\infty} (-1)^n \left(\frac{\ln n}{2\ln n}\right)^n = \sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{2}\right)^n$$
 and since $\sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^n$ converges, the series in this problem converges absolutely.

2. Find the interval of convergence for the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$$
(c)
$$\sum_{n=1}^{\infty} (n)^n x^n$$

(c)
$$\sum_{n=1}^{\infty} (n)^n x^n$$

For the series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$ (in part **a** above), fund the sum of the series as a function on x.

(a) We use the ratio test (the root test is also easy to use here):

$$\lim_{n \to \infty} \frac{\left| \frac{(x-2)^{n+1}}{10^{n+1}} \right|}{\frac{(x-2)^n}{10^n}} = \lim_{n \to \infty} \left| \frac{(x-2)}{10} \right| = \left| \frac{(x-2)}{10} \right| \text{ and so the series converges when } \left| \frac{(x-2)}{10} \right| < 1,$$

which, after solving yields -8 < x < 12. When x = 12 the series becomes

$$\sum_{n=0}^{\infty} \frac{(12-2)^n}{10^n} = \sum_{n=0}^{\infty} 1$$
 which obviously diverges, while when $x = -8$ the series becomes

$$\sum_{n=0}^{\infty} \frac{(12-2)^n}{10^n} = \sum_{n=0}^{\infty} 1 \text{ which obviously diverges, while when } x = -8 \text{ the series becomes}$$

$$\sum_{n=0}^{\infty} \frac{(-8-2)^n}{10^n} = \sum_{n=0}^{\infty} (-1)^n \text{ which also diverges. Consequently, the interval of convergence of this series is } (-8, 12).$$

We immediately take care of the last part of this problem and find the sum of this series

over the interval of convergence:
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n} = \sum_{n=0}^{\infty} \left(\frac{x-2}{10}\right)^n = \frac{1}{1 - \frac{x-2}{10}}$$
.

(b) Use the ratio test again: $\lim_{n \to \infty} \left| \frac{\frac{(2x+3)}{(n+1)!}}{\frac{(2x+3)^{2n+1}}{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(2x+3)^2}{n+1} \right| = 0 \text{ and since that is always}$

less than 1 the series $\sum_{n=0}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$ converges always and the interval of convergence if $(-\infty, +\infty)$.

- (c) Use the root test: $\lim_{n\to\infty} \sqrt[n]{(nx)^n} = \lim_{n\to\infty} |nx| = \infty$ with the last equality being true for all x except for x=0. Since the limit is never less than 1 for x not equal to 0, the series $\sum_{n=0}^{\infty} (n)^n x^n$ converges only when x=0 and the interval of convergence is [0,0].
- 3. Find the power series representation of the function $g(x) = \frac{x^2}{(1+2x)^2}$ and the interval of convergence of the power series.

First we focus on the function $h(x) = \frac{1}{(1+2x)^2}$. Observe first that $h(x) = \frac{1}{2} \left(\frac{1}{1+2x}\right)'$. Now, from what we know, $\frac{1}{1+2x} = \sum_{n=0}^{\infty} (-2x)^n$ and the series converges for |2x| < 1, which gives $-\frac{1}{2} < x < \frac{1}{2}$. Consequently, $h(x) = \frac{1}{2} \left(\frac{1}{1+2x}\right)' = \frac{1}{2} \left(\sum_{n=0}^{\infty} (-2x)^n\right)'$ and within $-\frac{1}{2} < x < \frac{1}{2}$ we can differentiate term by term to get $\frac{1}{2} \left(\sum_{n=0}^{\infty} (-2x)^n\right)' = \frac{1}{2} \sum_{n=1}^{\infty} (-2)^n nx^{n-1}$ (note the change of the start of the counter: the term we get for n=0 in the series we differentiate is annihilated after differentiation). So, summarizing, $h(x) = \frac{1}{2} \sum_{n=1}^{\infty} (-2)^n nx^{n-1}$ for $-\frac{1}{2} < x < \frac{1}{2}$. Our original function was $x^2h(x)$, and so $x^2h(x) = \frac{1}{2} x^2 \sum_{n=1}^{\infty} (-2)^n nx^{n-1} = \sum_{n=1}^{\infty} (-2)^{n-1} nx^{n+1}$ over $-\frac{1}{2} < x < \frac{1}{2}$ (where in the second equality we have simply multiplied every term of the series by $\frac{1}{2}x^2$.