
136.271 Assignment 2

Solutions

Note before you start: there are many ways to solve the problems below, and I do
not claim the solutions below are the shortest. They are just the first to come.

1. Use the integral test, the (simple) comparison test, the limit comparison test or the rest
of the theory we have covered so far (first 4 sections) to check if the following series
converges or diverges. (If you want to use the integral test, then you first need to show it
is applicable.)
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Ignore the first few term and look at the series 
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∑  diverges (theorem). So, by the comparison test, the series 

€ 

lnn
2nn= 3

∞

∑

also diverges. Consequently, the same is true for the series 
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We use the comparison test and compare with the series 
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We use the integral test. Consider the function 
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€ 

f (n) =
1

n(lnn) (ln2 n) −1
 over the integers

larger than 2 (all of these claims are obvious in this case). So, the series converges if and

only if the improper integral 

€ 

1
x(ln x) (ln2 x) −1

dx
3

∞

∫  converges.  We use the substitution

€ 

ln x = u : 

€ 

1
x(ln x) (ln2 x) −1

dx
3

∞

∫ = lim
a→∞

1
u u2 −1

du
x= 3

x= a

∫  and then 

€ 

v = u2 −1

€ 

lim
a→∞

1
u u2 −1

du
x= 3

x= a

∫ = lim
a→∞

u
u2 u2 −1

du
x= 3

x= a

∫ =
1
2
lim
a→∞

dv
(v +1) vx= 3

x= a

∫ . Now keep in mind that our

goal is to see if this integral converges. Take a look at the function 
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converge. We conclude (as we have explained above) that 
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∫  converges,

so that the series converges too.
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Used the comparison test with 
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x is larger than 2. We have proven that 
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Since 
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≤ an  for all n the claim in this exercise follows from the simple comparison test.


