
136.270 Solutions

Assignment 4 (Sections 14.7, 14.8, 15.1, 15.2, 15.3)
Handed: November 24, 2004.  Due: December 1, 2004 in class.

Show your work. Providing answers without justifying them will not be sufficient.

1. An open-top rectangular box of a specified volume V is to be constructed from a
sheet of metal by first cutting a rectangular piece of the sheet, then cutting equal squares
from the corners, folding up the remaining flaps and soldering their edges together (see
the picture). Find the dimensions of the material (x, y and s in the picture) that minimize

the amount of the sheet metal used.

Solution.  We are minimizing A = (x − 2s)(y − 2s) + 2(x − 2s)s + 2(y − 2s)s  under the
condition V = (x − 2s)(y − 2s)s . Set u = x − 2s , v = y − 2s . Then V = uvs  and

A = uv + 2us + 2vs . Solving V = uvs  for s gives V
uv

= s . The area then becomes a

function on u and v: A = uv + (2u + 2v)s = uv + (2u + 2v) V
uv

= uv + 2V (1
u
+
1
v
) . Compute

the partial derivatives: ∂A
∂u

= v − 2V 1
u2

 and ∂A
∂u

= u − 2V 1
v2

. Equate these to 0 to find the

critical points; get the system 0 = v − 2V 1
u2

 and 0 = u − 2V 1
v2

. The solution is u = 2V3

and v = 2V3 . The second derivative test yields a local minimum at that point. Since it is
the only local minimum and since the function A is a polynomial it follows that that point

gives the absolute minimum. We can then compute from above that s = 1
2
2V3 ,

x = 2 2V3  and y = 2 2V3  - the dimensions of the smallest (in area) such box.



2. The plane x + y + z = 1  is heated and the temperature at any point is given by
T (x, y, z) = 4 − 2x2 − y2 − z2 . Use Lagrange multipliers to find the hottest point on the
plane.

Solution. We are maximizing the function T (x, y, z) = 4 − 2x2 − y2 − z2  under the
constraint x + y + z = 1 . The critical point come from solving ∇T = λ∇g  and
x + y + z = 1 , where g(x, y, z) = x + y + z . Computing the two gradients and equating

component-wise gives −4x = λ ,  −2y = λ , −2z = λ , i.e., x = −
λ
4

, y = −
λ
2

 and z = −
λ
2

.

Substitute all these in x + y + z = 1  to get − 5
4
λ = 1 , i.e., λ = −

4
5

. So, x = 1
5

,  y = 2
5

,

z = 2
5

. This is the only critical point. So, it has to yield an absolute extremum. It follows

from the meaning of the quantities we discuss (i.e., from the shape of
T (x, y, z) = 4 − 2x2 − y2 − z2 ) that must be the absolute maximum.

3. (a) Evaluate x dA
R
∫∫  where R is the region in the first quadrant bounded by

y = 0, y = 2, x = 0 , and x = 1+ y2 .

(b) Evaluate ey
2
dy dx

x

1

∫
0

1

∫ .

(c) Find the volume of the solid bounded by the paraboloid z = x2 + y2  and the
plane z = 1 .

Solution.   (a) R can be described by the following
two pairs of inequalities:

0 ≤ y ≤ 2
0 ≤ x ≤ 1+ y2

So,

x dA
R
∫∫ = x dx

0

1+ y2

∫
0

2

∫  dy = x2

2
1+ y2

0
⎛

⎝⎜
⎞

⎠⎟
 dy

0

2

∫ =
(1+ y2 )2

2
 dy

0

2

∫ =
1
2

y + 2 y
3

3
+
y5

5
2
0

⎛
⎝⎜

⎞
⎠⎟
=
1
2
2 + 2

3

3
+
25

5
⎛
⎝⎜

⎞
⎠⎟

(b) Here is the region of integration (picture). The inner
integral of iterated integral in the statement of the problem is not
expressible in terms of basic functions. So, we need to change the



order of the integration, i.e., we need to express the region of integration in such a way
that the inner integration is with respect to x (rather than y).  Here it is: 0 ≤ y ≤ 1 ,

0 ≤ x ≤ y . Then the iterated integral becomes ey
2
dx dy

0

y

∫
0

1

∫ . We can now solve it:

ey
2
dx dy

0

y

∫
0

1

∫ = yey
2
dy

0

1

∫ =
1
2
ey

2 1
0
=
1
2
(e −1) .

(c) The solid S is shown in the picture. It is bounded by the surface z = x2 + y2  from blow
and by the plane z = 1  from above. We can find its
volume by computing the volume of the solid S1
outside S and inside the cylinder 1 = x2 + y2 ,  and
then subtracting the latter from the volume of the
cylinder of height 1 and over the base  1 = x2 + y2  in
the xy-plane. The volume of the last cylinder is π
(its radius is 1 and its height is also 1). The volume
of S1  is (x2 + y2 ) dA

R
∫∫  where R is the disk

1 ≥ x2 + y2 . Because of symmetry we can focus on
the first octant and the associated quarter of a disk,
which can be described by the inequalities 0 ≤ x ≤ 1

and 0 ≤ y ≤ 1− x2 . So, its volume is (x2 + y2 ) dy dx
0

1− x2

∫
0

1

∫ . We now compute:

(x2 + y2 ) dy dx
0

1− x2

∫
0

1

∫ = (x2y + y3

3
) 1− x2

0
 dx =

0

1

∫ (x2 1− x2 + (1− x
2 ) 1− x2

3
) dx

0

1

∫ =

=
1
3
(2x2 1− x2 + 1− x2 ) dx

0

1

∫ =
1
3
2x2 1− x2dx

0

1

∫ +
1
3

1− x2dx
0

1

∫
The two integrals are doable with one trigonometric substitution x = sin t :

x2 1− x2dx∫ =
1
8
(x 1− x2 (2x2 −1) + sin−1 x)  and 

1
3
2x2 1− x2dx

0

1

∫ =
π
24

;

1− x2dx∫ =
1
2
(x 1− x2 + sin−1 x)  and 

1
3

1− x2dx
0

1

∫ =
π
12

. So, the total volume of one

quarter of S1  is 3π
24

. Consequently the volume of S1  is 4 3π
24

=
3π
6

=
π
2

, and so the

volume of S is π −
π
2
=
π
2

.


