
136.270

Assignment 2 Solutions (Sections 13.3, 14.1, 14.2)
Handed: October 15, 2004.  Due: October 22, 2004 in class

.
1. [6 marks] [3](a) Find the length of the curve  

r(t) = 1− 2t, 4t −1,t − 2( )  between the
points (1,−1,−2)  and (−3,7,0) .

        [3] (b) Reparametrize the curve in part (a) with respect to arc length
measured from the point where t = 0  (in the direction of increasing t).

Solution: (a) Observe first that (1,−1,−2)  happens when t = 0  and that (−3,7,0)  happens
when t = 2 . So, the desired arc length is

s = ′r (t) dt
0

2

∫ = (1− 2t, 4t −1,t − 2 ′) dt
0

2

∫ = (−2,4,1) dt
0

2

∫ = 4 +16 +1dt
0

2

∫ = 2 21 .

(b) s(t) = ′r (u) du
0

t

∫ = 21du
0

t

∫ = t 21  so that t = s
21

. Substitute this for t in the vector

function to get 
 

r(s) = 1− 2 s
21
,4 s

21
−1, s

21
− 2⎛

⎝⎜
⎞
⎠⎟

.

2. [7 marks] [4] (a) Find the equation of the osculating plane of the curve  
r(t) = 1,t 2 ,t( )

at the point (1,1,1)
        [3] (b) At what point(s) (if any) on the curve r(t) = 1,t 2 ,t( )  is the normal

plane parallel to the plane 6y + 3z = −3?
Solution. (a) Notice before we start with the computation that the point (1,1,1)  happens
when t = 1. The osculating plane is perpendicular to the bi-normal vector, which is the

cross product T(t) × N(t) . First we find T(t) = ′r (t)
′r (t)

=
(1,t 2 ,t ′)

′r (t)
=
(0,2t,1)
4t 2 +1

. Digress a bit

to notice that T(1) = (0,2,1)
5

 and so (0,2,1)  is parallel to T(1) . The normal vector can

then be found by computing N(t) = ′T (t)
′T (t)

=

(0,2t,1)
4t 2 +1

⎛
⎝⎜

⎞
⎠⎟
′

(0,2t,1)
4t 2 +1

⎛
⎝⎜

⎞
⎠⎟
′

. That could be tedious. We

look for shortcuts. Back up a bit to notice that we need a vector (any vector!) that is

perpendicular to the osculating plane. Since ′T (t) is parallel to N(t) = ′T (t)
′T (t)

, the cross



product of (0,2,1) × ′T (1)  will be parallel to the bi-normal vector. So, we start with

′T (t) : ′T (t) = (0,2t,1)
4t 2 +1

⎛
⎝⎜

⎞
⎠⎟
′
=
(0,2,0) 4t 2 +1 − (0,2t,1) 8t

2 4t 2 +1
4t 2 +1

. We do not want to

simplify this: we simply substitute t=1 (the moment when the given point happens) to get

′T (1) =
(0,2,0) 5 − (0,2,1) 8

2 5
5

=
(0,10,0) − (0,8, 4)

5 5
=

1
5 5

(0,2,−4) = 2
5 5

(0,1,−2) .

So, (0,1,−2)  is certainly parallel to ′T (t)  and so it is also parallel to N(t) . So the cross
product of that vector and (0,2,1)  will give us a vector that is parallel to the bi-normal
vector, and so a vector that is perpendicular to the osculating plane. We compute
(0,1,−2) × (0,2,1) = (5,0,0) . So (5,0,0)  is a vector we can use and an equation of the
osculating plane is 5x = 0 .

(b) The normal plane is perpendicular to the ′r (t) = 0,2t,1( )  while the given plane
is perpendicular to the vector (0,6, 3) . So, the planes are parallel if these two vectors are
parallel. Two vectors are parallel if one is a multiple of the other. So, we check when
0,2t,1( ) = k(0,6, 3)  for some number k. Equating the components and solving we get

k = 1
3

 and t = 1. So, the point we were looking for happens when t = 1 and it is (1,1,1) .

3. [6 marks]
[2] (a) Find and sketch the domain of the function f (x, y) = x − y ln(x + y) .
[2] (b) Sketch the graph of the function f (x, y) = y2 − x2 . You may use computers

or the webMathematica page.
[2] (c) Sketch a contour map (also know as a topographic map) of the function

f (x, y) = y2 − x2  by showing at least 4 level curves.

Solution. (a) The root and the logarithm tell us that x − y ≥ 0  and x + y > 0  respectively.
Tidy this a bit to get x ≥ y  and x > −y . So the domain of the function consists of all pairs
(x, y)  satisfying these two inequalities. A picture of the domain is given below: it
consists of the lower quarter-plane, where the two colours overlap.

  

for x>-y take the half
plane above the line,
NOT below the line!!



(b)  A sketch of the
graph of the function is given
to the right.

(c) The contour  plot
is given to the left. We show
5 contours obtained from the
traces z=-4, z=-2, z=0, z=2
and z=4

4.  [6 marks].
[3] (a) Use the definition of limit to show that

lim
(x,y)→(0,0)

2xy = 0 . (Hint: you may need the observation that

(x − y)2 ≥ 0 .)
[3] (b) Show that the following limit does not exist:

lim
(x,y)→(0,0)

2x2y2

x4 + y4
.

Solution. (a) We want to show that for every ε > 0  there is a δ > 0 (that depends on ε )
such that if x2 + y2 < δ  then 2xy < ε . Start with the hint and apply it to ( x − y )2  to

get x 2 − 2 xy + y 2 ≥ 0 , i.e., x2 + y2 ≥ 2 xy . Since the squares are never negative it

follows that x2 + y2 ≥ 2xy . Now it is easy: choose δ = ε . Then if x2 + y2 < δ  we get

x2 + y2 < ε  and so x2 + y2 < ε . But since 2xy ≤ x2 + y2 , we have 2xy < ε , which is
what wanted.

(b) Along x = 0  we get lim
(x,y)→(0,0)

2x2y2

x4 + y4
= lim

y→0

2(02 )y2

04 + y4
= 0 , while along y = x  we

find lim
x→0

2x2x2

x4 + x4
= lim

x→0

2x4

2x4
= 1 . Since these two limits are distinct, the original limit does

not exist.


