

DEPARTMENT & COURSE NO: 136.270TIME: 2 HOURSEXAMINATION: Calculus 3AEXAMINERS: V. CharetteValues

[12] 1. Find an equation of the tangent plane to the graph of $f(x,y) = y^2\sqrt{x}$ at $(4,2,8)$.

[6] 2. (a) Suppose $F(x,y,z)$ has continuous partial derivatives. Find $\frac{\partial F}{\partial u}(3uv, \sin v, u^2)$ in terms of the partial derivatives of F .

[6] (b) Suppose $G(x,y) = xe^y$, where $x = x(t)$, $y = y(t)$ satisfy $x(0) = -1$, $y(0) = 1$, $x'(0) = 2$ and $y'(0) = 1$. Find $\frac{d}{dt} G(x(t), y(t))$ at $t = 0$.

DEPARTMENT & COURSE NO: 136.270

TIME: 2 HOURS

EXAMINATION: Calculus 3A

EXAMINERS: V. Charette

Values

[12] 10. Compute the line integral $\int_C (xy + e^{\sqrt{x}}) dx + (x^2 + \cos(y^2)) dy$ where C is the positively oriented curve bounding the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

Values

[12] 9. Let C be the curve from $(0,0,1)$ to $(1,1,4)$ in the intersection of the surfaces $x = y^2$ and $z = 2x - y + 1$.

Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = -y\mathbf{i} + z\mathbf{j} + \mathbf{k}$.

Values

[12] 8. Compute the line integral $\int_C (x + 2y) ds$, where C is the segment of the helix

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}, \quad 0 \leq t \leq \frac{\pi}{2}.$$

THE UNIVERSITY OF MANITOBA

FINAL EXAMINATION

DATE: April 19, 2003

PAGE 4 of 7

PAPER NO: 288

TIME: 2 HOURS

DEPARTMENT & COURSE NO: 136.270

EXAMINERS: V. Charette

EXAMINATION: Calculus 3A

Values

[12] 6. Find the volume of the solid under the graph of $z = \frac{1}{\sqrt{1+x^2+y^2}}$ and above the region in the first quadrant bounded by $x^2 + y^2 = 4$, $y = 0$, $y = x$.

[6] 7. Using an iterated integral, find a formula for the volume of the solid contained in the first octant ($x \geq 0, y \geq 0, z \geq 0$), bounded by the planes $x + y + z = 2$ and $-2x - y + z = 0$. (Do not evaluate the integral).

THE UNIVERSITY OF MANITOBA

DATE: April 19, 2003

FINAL EXAMINATION

PAPER NO: 288

PAGE 3 of 7

DEPARTMENT & COURSE NO: 136.270

TIME: 2 HOURS

EXAMINATION: Calculus 3A

EXAMINERS: V. Charette

Values

[12] 4. Find and classify all the critical points of $f(x,y) = \frac{x^3}{3} - x^2 - xy - \frac{y^2}{2}$.

[12] 5. Compute the double integral $\int_0^4 \int_{-2y}^{7y} \sqrt{x+2y} \, dx \, dy$.

DATE: April 19, 2003

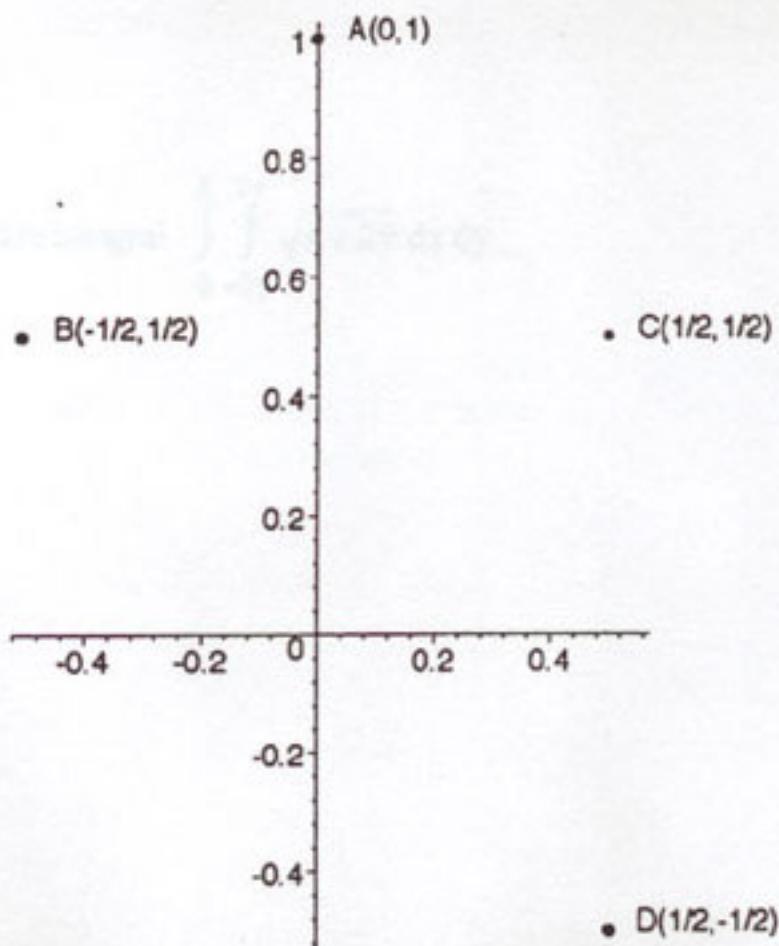
FINAL EXAMINATION

PAPER NO: 288

PAGE 2 of 7

DEPARTMENT & COURSE NO: 136.270TIME: 2 HOURSEXAMINATION: Calculus 3AEXAMINERS: V. Charette

Values


3. Let $f(x,y) = xy$ and let $\mathbf{u} = \frac{1}{\sqrt{2}} \mathbf{i} - \frac{1}{\sqrt{2}} \mathbf{j}$.

[4] (a) Find $\nabla f(-1,1)$, the gradient of f at $(-1,1)$.

[4] (b) At the point $(-1,1)$, find $D_{\mathbf{u}}f(-1,1)$, the directional derivative of f in the direction of \mathbf{u} .

[4] (c) In what direction does f decrease most rapidly at the point $(-1,1)$?

[6] (d) Sketch the plane vector field $\nabla f(x,y)$, plotting the vectors at the points A, B, C, D indicated below.

