
136.270

Assignment 2 (Sections 14.3, 15.1-15.3)
Handed: Oct.10 2003.  Due: Oct.17 2003 in class. Show your work; providing answers

without justifying them would not be sufficient.

1. [8 marks] A spiral curve is defined by the vector function   
r
r t t t t( ) ( cos , sin , )= 4 4 3 .

(a) Find the arc length function s t( )  measured from the point (4,0,0).
(b) Reparametrize the curve in terms of the arc length function s measured

from the point (4,0,0).
(c) Compute the curvature of that spiral curve at any moment in terms of s.
(d) Compute the curvature in terms of t directly from  

r
r t t t t( ) ( cos , sin , )= 2 2 3 .

(e) Find the equations of the normal and the osculating plane to the spiral at
the point (4,0,0).

Solution.
[1.5] (a)  

r¢ = -r t t t( ) ( sin , cos , )4 4 3  and so
r¢ = + + = =r t t t( ) sin cos16 16 9 25 52 2 . Consequently, s t du t

t
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lower limit of the integral is t=0 since at that moment we get the point (4,0,0).
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        [1.5] (d) NOTE: I have used the intended   
r
r t t t t( ) ( cos , sin , )= 4 4 3 rather thanr

r t t t t( ) ( cos , sin , )= 2 2 3  (some of you have been told of the typo). You get all of the marks
in both cases.
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 as we have already

found above.



[2] (e)  
r¢ = -r t t t( ) ( sin , cos , )4 4 3  is tangent to the curve and normal to the normal

plane. At t=0 (the moment we get the point (4,0,0)) we compute that   
r¢ =r ( ) ( , , )0 0 4 3 . So,

the equation of the normal plane through (4,0,0) is 0 4 4 0 3 0 0( ) ( ) ( )x y z- + - + - = .
For the osculating plane we need the bi-normal vector, or, for that matter, any

vector that is parallel to the bi-normal vector. The vector T T( ) ( )0 0¥ ¢  is such. Using what

we have computed above we find that T( ) ( , , )0
1
5

0 4 3=  and ¢ = -T ( ) ( , , )0
1
5

4 0 0 . The cross

product of these two is 
1
25

0 12 16( , , )- . So, the bi-normal plane has the equation
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0 0( ) ( ) ( ) .x y z- - - + - =

2.  [4 marks] Determine and sketch (in the xy-plane) the domain of each of the following
functions.

(a) f x y x y( , ) = + 3

(b) g x y
x y

xy
( , ) = +

-1
Solution.
[2] (a) We must have x y+ ≥3 0 or y x3 ≥ - . The points satisfying that inequality are in
the shaded region below.

[2] (b) g x y
x y

xy
( , ) = +

-1
 is well defined when xy ≥ 0 and when 1 0- πxy . The first

inequality happens for the points in the first and third quadrant (including the axes), while
the second inequality happens for all points outside the curve 1 0- =xy , that is, outside
the hyperbola xy = 1. The domain is the shaded portion below, excluding the dotted lines.



[8] 3. [8 marks]

(a) Find the limit or show it does not exist: lim
cos( )

( , ) ( , )x y

x y

x yÆ

- +
+0 0

2 2

2 2

1

(b) Find the limit or show it does not exist: lim
( , ) ( , )x y

x

x yÆ -

-
+1 1

2

2 3

1
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becomes continuous? Do  not forget to justify your answer.

Solution.
[2.5] (a) Switch to polar coordinates:
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[2.5] (b) Along the curve y x= -  (passing through (1,-1)) we have
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On the other hand along the curve y = -1 (which also passes through (1,-1)), we have:
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Since we got two different answers when approaching (1,-1) along two different curves,
we conclude that the original limit does not exist.

[3] (c) The function f x y
x
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2 2 1 will be continuous at (0,0) if we define it there
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defining f ( , )0 0 1=  the function will become continuous.

4.  [4 marks].
[2] (a) Find fx ( , )0 0  and find f x yy ( , ) if f x y e x yxy( , ) sin( )= + + p .

[3] (b) Find all (four) second order partial derivatives of g x y xy x y( , ) ln( )= + +2 .
Solution.
[2] (a) f x y ye x y e x yx

xy xy( , ) sin( ) cos( )= + + + + +p p . So  fx ( , ) cos( )0 0 1= = -p .
     f x y xe x y e x yy

xy xy( , ) sin( ) cos( )= + + + + +p p .
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