136.270

Assignment 2 (Sections 14.3, 15.1-15.3)

Handed: Oct.10 2003. Due: Oct.17 2003 in class. Show your work; providing answers without justifying them would not be sufficient.

- 1. [8 marks] A spiral curve is defined by the vector function $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$.
 - (a) Find the arc length function s(t) measured from the point (4,0,0).
 - (b) Reparametrize the curve in terms of the arc length function s measured from the point (4,0,0).
 - (c) Compute the curvature of that spiral curve at any moment in terms of s.
 - (d) Compute the curvature in terms of t directly from $\vec{r}(t) = (2\cos t, 2\sin t, 3t)$.
 - (e) Find the equations of the normal and the osculating plane to the spiral at the point (4,0,0).

Solution.

[1.5] (a)
$$\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$$
 and so

$$|\vec{r}'(t)| = \sqrt{16\sin^2 t + 16\cos^2 t + 9} = \sqrt{25} = 5$$
. Consequently, $s(t) = \int_0^t 5du = 5t$. Note that the

lower limit of the integral is t=0 since at that moment we get the point (4,0,0).

[1.5] (b) If follows from (a) that
$$t = \frac{s}{5}$$
, so that $\vec{r}(s) = (4\cos\frac{s}{5}, 4\sin\frac{s}{5}, 3\frac{s}{5})$.

[1.5] (c)
$$\kappa(s) = \left| \frac{d\mathbf{T}}{ds} \right|$$
 where **T** is the unit tangent vector. So

$$\mathbf{T}(s) = \frac{\vec{r}'(s)}{|\vec{r}'(s)|} = \frac{\left(-\frac{4}{5}\sin\frac{s}{5}, \frac{4}{5}\cos\frac{s}{5}, \frac{3}{5}\right)}{1} = \left(-\frac{4}{5}\sin\frac{s}{5}, \frac{4}{5}\cos\frac{s}{5}, \frac{3}{5}\right). \text{ So}$$

$$\kappa(s) = \left| \frac{d\mathbf{T}}{ds} \right| = \left(-\frac{4}{25} \cos \frac{s}{5}, -\frac{4}{25} \sin \frac{s}{5}, 0 \right) = \frac{4}{25}.$$

[1.5] (d) NOTE: I have used the intended $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$ rather than $\vec{r}(t) = (2\cos t, 2\sin t, 3t)$ (some of you have been told of the typo). You get all of the marks in both cases.

$$\kappa(t) = \left| \frac{\mathbf{T}'(t)}{\vec{\mathbf{r}}'(t)} \right|$$
. We have already computer that $|\vec{r}'(t)| = 5$ and that $\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$.

So,
$$\mathbf{T}(t) = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|} = \frac{(-4\sin t, 4\cos t, 3)}{5}$$
. So $\mathbf{T}'(t) = \frac{(-4\cos t, -4\sin t, 0)}{5}$. Consequently

$$|\mathbf{T}'(t)| = \frac{|(-4\cos t, -4\sin t, 0)|}{5} = \frac{4}{5}$$
. Finally $\kappa(t) = \left|\frac{\mathbf{T}'(t)}{\mathbf{r}'(t)}\right| = \frac{4}{5} \cdot \frac{1}{5} = \frac{4}{25}$ as we have already

found above.

[2] (e) $\vec{r}'(t) = (-4\sin t, 4\cos t, 3)$ is tangent to the curve and normal to the normal plane. At t=0 (the moment we get the point (4,0,0)) we compute that $\vec{r}'(0) = (0,4,3)$. So, the equation of the normal plane through (4,0,0) is 0(x-4)+4(y-0)+3(z-0)=0.

For the osculating plane we need the bi-normal vector, or, for that matter, any vector that is parallel to the bi-normal vector. The vector $\mathbf{T}(0) \times \mathbf{T}'(0)$ is such. Using what we have computed above we find that $\mathbf{T}(0) = \frac{1}{5}(0,4,3)$ and $\mathbf{T}'(0) = \frac{1}{5}(-4,0,0)$. The cross product of these two is $\frac{1}{25}(0,-12,16)$. So, the bi-normal plane has the equation $0(x-4)-\frac{12}{25}(y-0)+\frac{16}{25}(z-0)=0$.

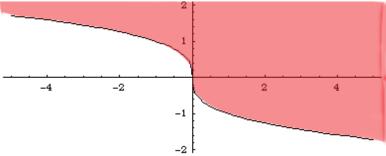
2. [4 marks] Determine **and sketch** (in the xy-plane) the domain of each of the following functions.

(a)
$$f(x,y) = \sqrt{x + y^3}$$

(b)
$$g(x,y) = \frac{x+y}{1-\sqrt{xy}}$$

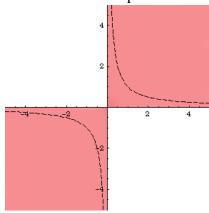
Solution.

[2] (a) We must have $x + y^3 \ge 0$ or $y^3 \ge -x$. The points satisfying that inequality are in the shaded region below.



[2] (b) $g(x,y) = \frac{x+y}{1-\sqrt{xy}}$ is well defined when $xy \ge 0$ and when $1-\sqrt{xy} \ne 0$. The first

inequality happens for the points in the first and third quadrant (including the axes), while the second inequality happens for all points outside the curve $1 - \sqrt{xy} = 0$, that is, outside the hyperbola xy = 1. The domain is the shaded portion below, excluding the dotted lines.



[**8**] **3.** [8 marks]

(a) Find the limit or show it does not exist:
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2}$$

(b) Find the limit or show it does not exist:
$$\lim_{(x,y)\to(1,-1)} \frac{x^2-1}{x^2+y^3}$$

(c) Can the function $f(x,y) = \frac{x^3}{x^2 + y^2} + 1$ be defined at the point (0,0) so it becomes continuous? Do not forget to justify your answer.

Solution.

[2.5] (a) Switch to polar coordinates

$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} = \lim_{r\to 0} \frac{1-\cos(r^2)}{r^2} \stackrel{L@Hospital}{=} \lim_{r\to 0} \frac{-2r\sin(r^2)}{2r} = 0$$

[2.5] (b) Along the curve y = -x (passing through (1,-1)) we have

$$\lim_{\substack{(x,y)\to(1,-1)\\\text{alone that curve}}} \frac{x^2-1}{x^2+y^3} = \lim_{x\to 1} \frac{x^2-1}{x^2+(-x)^3} = \lim_{x\to 1} \frac{(x-1)(x+1)}{x^2(1-x)} = \lim_{x\to 1} \frac{-(x+1)}{x^2} = -\frac{1}{2}.$$

On the other hand along the curve y = -1 (which also passes through (1,-1)), we have:

$$\lim_{\substack{(x,y)\to(1,-1)\\\text{alone }y=-1\\\text{alone }y=-1}} \frac{x^2-1}{x^2+y^3} = \lim_{x\to 1} \frac{x^2-1}{x^2+(-1)^3} = \lim_{x\to 1} \frac{x^2-1}{x^2-1} = \lim_{x\to 1} 1 = 1.$$

Since we got two different answers when approaching (1,-1) along two different curves, we conclude that the original limit does not exist.

[3] (c) The function $f(x,y) = \frac{x^3}{x^2 + y^2} + 1$ will be continuous at (0,0) if we define it there so that $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$. This is only possible if the limit exists. We compute:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2} + 1 = \left(\lim_{r\to 0} \frac{(r\cos\theta)^3}{r^2}\right) + 1 = (\lim_{r\to 0} r\cos^3\theta) + 1 = 1. \text{ So, by defining } f(0,0) = 1 \text{ the function will become continuous.}$$

4. [4 marks].

- [2] (a) Find $f_x(0,0)$ and find $f_y(x,y)$ if $f(x,y) = e^{xy} \sin(x + y + \pi)$.
- [3] (b) Find all (four) second order partial derivatives of $g(x,y) = xy^2 + \ln(x+y)$.

Solution.

[2] (a)
$$f_x(x,y) = ye^{xy}\sin(x+y+\pi) + e^{xy}\cos(x+y+\pi)$$
. So $f_x(0,0) = \cos(\pi) = -1$. $f_y(x,y) = xe^{xy}\sin(x+y+\pi) + e^{xy}\cos(x+y+\pi)$.

[3] (b)
$$g_x(x,y) = y^2 + \frac{1}{x+y}$$
, $g_y(x,y) = 2xy + \frac{1}{x+y}$. So we have
$$g_{xx}(x,y) = -\frac{1}{(x+y)^2}$$
, $g_{xy}(x,y) = 2y - \frac{1}{(x+y)^2}$
$$g_{yx}(x,y) = 2y - \frac{1}{(x+y)^2}$$
 and $g_{yy}(x,y) = 2x - \frac{1}{(x+y)^2}$.