1. Find $\frac{\phi}{dt}$ for the following parametric curves.

a.
$$x = t^3 + 3t^2 - 9t + 1$$
, $y = t^2 (-\infty < t < \infty)$

b.
$$x = \sqrt{t}$$
, $y = t - 1$ ($0 \le t \le 4$)

2. Find $\frac{d^2y}{dt^2}$ for $x = \sin 2t$, $y = \sin t$

3. Find the equation of the tangent line to the parametric curve $x=t^2-t$, $y=t^2+t$ at the point where t=2.

4. Find the points where the tangent line of the following parametric curves is horizontal or vertical.

3.74

a.
$$x = t^3 + 3t^2 - 9t + 1$$
, $y = t^2 (-\infty < t < \infty)$

b.
$$x = \sqrt{t}$$
, $y = t - 1$ ($0 \le t \le 4$)

5. Sketch the graphs in Cartesian coordinates obtained by:

a.
$$r = \sin 4\Theta$$

$$b. \quad r = 3 + 2\sin\Theta$$

6. Find $\frac{dy}{dx}$ for the curves in 5 at the point $\Theta = \frac{\pi}{6}$.