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Brief Solutions

1. Use l’Hôpital’s rule to evaluate

(a)[3] lim
x→0

sin2(x)

1− cos(x)

Solution First notice that both the numerator and the denominator tend to 0 as

x → 0. So, we can apply l’Hôpital’s rule.

lim
x→0

sin2(x)

1− cos(x)
= lim

x→0

2sin(x)cos(x)

sin(x)
= lim

x→0
2cos(x) = 2

(b)[5] lim
x→0+

(1− x)1/x

Solution Set y = (1− x)
1
x . So ln y = ln((1− x)

1
x ) = 1

x ln(1− x). We now compute

limx→0+ ln y = limx→0+
1

x
ln(1− x) = limx→0+

ln(1− x)

x
=

= limx→0+

−1
1−x

1
= −1.

where in the second to the last step we have used l’Hôpital’s rule.

Since limx→0+ ln y = −1 and since limx→0+ ln y = ln(limx→0+y), it follows that

ln(limx→0+y) = −1 and so limx→0+y = e−1.

2.[7] Consider the curve C with parametric equations

x(t) = t3 − 12t, y(t) = t2 + 1 (−4 ≤ t ≤ 4)

(a) Find the equation of the tangent line to the curve at the point on the curve corre-

sponding to t = 1.

Solution
dy

dx
=

dy
dt
dx
dt

=
2t

3t2 − 12
.

At t = 1 we get dy
dx = −2

9 . This the slope of the tangent line. Since that line

passes through the point (−11, 2) (which happens on the given curve when t = 1),

it follows that the tangent line we want has an equation y−2
x+11 = −2

9 .

continued. . .
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(b) Give the coordinates of the point(s) on C at which C has a vertical tangent line.

Solution Tangents line are vertical where dx
dt = 0 while at the same time dy

dt $= 0.

Since dx
dt = 3t2−12, that happens when t = 2 and when t = −2. These two moments

yield the points (−16, 5) and (16, 5) respectively.

3. (a)[4] Sketch the curve r = 1 + cos θ for 0 ≤ θ ≤ 2π.

Solution

Figure 1: default

(b)[3] Find a polar equation for the curve whose equation in Cartesian coordinates is

x2 − y2 = 1. Find the Cartesian coordinate(s) of the point(s) on this curve whose

θ- coordinate is 0.

Solution Substitute x = r cos(θ) and y = r sin(θ) to get r2 cos2(θ)− r2 sin2(θ) = 1.

When θ = 0 we have r2 cos2(0)−r2 sin2(0) = 1 which in turn gives r = 1 or r = −1.

At r = 1 (and θ = 0) we compute x = 1 and y = 0. At r = −1 (and θ = 0) we

compute x = −1 and y = 0. So we get the points (1, 0) and (−1, 0).

continued. . .
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4.[5] Find
d

dx

(∫ 5x

3x

dt

15 + t4

)
at x = 1. Do not simplfy your answer.

Solution
d

dx

(∫ 5x

3x

dt

15 + t4

)
=

1

15 + (5x)4
· 5− 1

15 + (3x)4
· 3.

When x = 1 we get 1
15+(5)4 · 5− 1

15+(3)4 · 3.

5.[5] Evaluate the definite integral

∫ π

0

(
1 + sec2

(x

4

))
dx.

Solution

∫ π

0

(
1 + sec2

(x

4

))
dx =

∫ π

0

1dx +

∫ π

0

sec2
(x

4

)
dx = x ‖π

0 + 4 tan(
x

4
) ‖π

0 = π − 4

6.[3] Evaluate the indefinite integral

∫ (√
x− 1√

x

)2

dx.

Solution

∫ (√
x− 1√

x

)2

dx =

∫ (
x− 2 +

1

x

)2

dx =
x2

2
− 2x + ln |x| + c

7.[5] If f(x) = x3 + 1, evaluate lim
n→∞

n∑

i=1

(
2

n

)
f

(
2i

n

)
by writing it as a definite integral with

lower limit of integration 0, and then evaluating that integral. Briefly explain what you

are doing.

Solution

If the upper limit of the integral is b then 2
n = b−0

n gives b = 2. The left-hand point of

the i-th subinterval is 2i
n . With that we have that

lim
n→∞

n∑

i=1

(
2

n

)
f

(
2i

n

)
=

∫ π

0

f(x)dx =

∫ π

0

(x3 + 1)dx =
x4

4
+ x |20 = 6

40

THE END


