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1. Evaluate the following integrals.

(a)[3]
∫

2ex

ex+2 dx

With u = ex + 2, du = exdx, we have:
∫

2ex

ex + 2
dx =

∫
2du

u
= 2 ln |u| + c = 2 ln(ex + 2) + c

(b)[4]
∫ 8

0
cos(

√
x+1)√

x+1
dx

Use u =
√

x + 1 so that du = 1
2
√

x+1
dx:

∫ 8

0

cos(
√

x + 1)√
x + 1

dx =

∫ x=8

x=0

2 cos udu = 2 sin u|x=8
x=0 = 2 sin(

√
x + 1)|80 = 2 sin 3−2 sin 1

2.[6] Find the area of the region bounded by the curves x = y2 − 12 and x = y as illustrated
in the picture below.

Solving x = y2 − 12, x = y gives y = −3 and y = 4. So, the required area is:
∫ 4

−3

(y − (y2 − 12)dy =
y2

2
− y3

3
+ 12y|4−3 = 8− 64

3
+ 48− 9

2
− 9 + 26.

3.[6] Find the area of the region inside the curve r = 2sin(2θ) (given in polar coordinates)
and outside the curve r = sin(2θ) (in polar coordinates), as illustrated in the picture
below.

The required area is 4 times larger than the area of the region in the first quadrant. So
we have:

Area = 4
1

2

∫ π
2

0

(2 sin 2θ)2 − (sin θ)2)dθ = 2

(∫ π
2

0

4 sin2 2θdθ −
∫ π

2

0

sin2 θdθ

)
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Now we use the identity sin2 θ = 1
2(1− cos 2θ) applied both to sin2 θ and to sin2 2θ.

Area = 8
1

2

∫ π
2

0

(1− cos 4θ)dθ −
∫ π

2

0

(1− cos 2θ)dθ =

4(θ − 1

4
sin 4θ)− θ +

1

2
sin 2θ|

π
2
0 = 3θ − sin 4θ +

1

2
sin 2θ|

π
2
0 = 3

π

2
.

(In the following two question the graphs do not correspond precisely to what has been
described in the text. That affects the limits of integration only. In the solutions below
we give a priority to the text. Solutions where the graphs have been used as reference
were also considered correct.)

4.[7] The region R is bounded by the curves y = cos(x), y = 1 and x = 1 as illustrated in the
picture below. Find the volume of the solid obtained by revolving R around the x-axis.
[Hint: washer method!]

V =

∫ 1

0

(12 − cos2 x)πdx = πx‖1
0 − π

∫ 1

0

cos2 dx

We use the identity cos2 x = 1
2(cos 2x + 1)

V = π − π

∫ 1

0

1

2
(cos 2x + 1)dx = π − π

1

2

sin 2x

2
− π

2
x|10 = π − π sin 2

4
− π

2
.

5.[7] The region R is bounded by the curves y = sin(x2), y = 1 and x = 0 as illustrated in the
picture below. Find the volume of the solid obtained by revolving R around the y-axis.
[Hint: Cylindrical shells!]
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V =

∫ √
π

0

2πx(1− sin(x2))dx = 2π
x2

2
|
√

π
0 − 2π

∫ √
π

0

x sin(x2)dx

We use the substitution u = x2, so that du
2 = xdx.

V = 2π
π

2
− 2π

∫ x=
√

π

x=0

1

2
sin udu = π2 + π cos u|x=

√
π

x=0 =

= π2 + π cos x2|
√

π
0 = π2 − π − π = π2 − 2π.

6. Evaluate the following integrals

(a)[3]
∫ 1

2
0

2+3x√
1−x2 dx

I =

∫ 1
2

0

2 + 3x√
1− x2

dx =

∫ 1
2

0

2√
1− x2

dx +

∫ 1
2

0

3x√
1− x2

dx

For the second integral we use u = 1− x2 so that −2xdx = du.

I = 2 sin−1 x|
1
2
0 + 3

∫ x= 1
2

x=0

−du

2
√

u
= 2 sin−1 1

2
− 2 sin−1 0− 3

2

u
1
2

1
2

|x= 1
2

x=0 =

= 2
π

4
− 3(1− x2)|

1
2
0 =

π

2
− 3(

3

4
) + 3.

(b)[4]
∫

2x ln(x) dx

Use integration by parts: u = ln x, dv = xdx so that du = dx
x and v = x2

2 .

∫
2x ln(x) dx = 2

∫
x ln(x) dx = 2

x2

2
ln x− 2

∫
x2

2

1

x
dx = x2 ln x− x2

2
+ c.


