THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm - 6:30 pm
DEPARTMENT \& COURSE NO: 136.170
EXAMINATION: Calculus II

TEST 2
TITLE PAGE
TIME:_1_HOUR
EXAMINER: (Identified Below)

NAME: (PRINT)
STUDENT NUMBER (IN INK): \qquad
SIGNATURE (IN INK):
(I understand that cheating is a serious offense)

IMPORTANT:

Please indicate your instructor and section by placing a check mark in the appropriate box below.

SECTION TIME INSTRUCTOR

\square L03	M,W,F	9:30-10:20	R. G. Woods
\square L04	M,W,F	$11: 30-12: 20$	E. Samei
\square L05	Tues, Thurs.	$1: 00-2: 15$	N. Harland

\square L92 Challenge for Credit

INSTRUCTIONS TO STUDENTS:

This is a 1 hour exam. Please show your work clearly.
No calculators, texts, notes or other aids are permitted.
This exam has a title page, 5 pages of questions and 1
blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left-hand margin beside the statement of the question. The total value of all questions is 40 .

Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.

DO NOT WRITE IN	
THIS COLUMN	
1.	18
2.	18
3.	
TOTAL	

THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm - 6:30 pm
DEPARTMENT \& COURSE NO: 136.170 EXAMINATION: Calculus II

TEST 2
Page 1 of 5
TIME:_1 HOUR
EXAMINER: Various

1. (a) Find the points of the intersection of the curves $y=2 x^{2}$ and $y=3-x^{2}$.
(b) Find the area of the region enclosed by the curves $y=2 x^{2}, y=3-x^{2}$, $\mathrm{x}=-2$, and $\mathrm{x}=0$.

THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm - 6:30 pm
DEPARTMENT \& COURSE NO: 136.170 EXAMINATION: Calculus II

TEST 2
Page 2 of 5
TIME:_1 HOUR
EXAMINER: Various
[8] 2. Find the area of the region that lies inside $r=1+\sin \theta$ and outside $r=2-\sin \theta$.

THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm - 6:30 pm
DEPARTMENT \& COURSE NO: 136.170 EXAMINATION: Calculus II

TEST 2
Page 3 of 5
TIME:_1 HOUR
EXAMINER: Various
3. Let S be the region in the plane enclosed by the curves $y=x^{2}+1$ and $y=1-x$.
(a) Find the volume obtained by rotating S around the x -axis.

THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm-6:30 pm
DEPARTMENT \& COURSE NO: 136.170 EXAMINATION: Calculus II

TEST 2
Page 4 of 5
TIME:_1 HOUR
EXAMINER: Various
(b) Find the volume obtained by rotating S around the y -axis.
[4] 4. Evaluate $\frac{d}{d x} \tan ^{-1}\left(x^{4}\right)$ when $x=2$. Is your answer larger than $\frac{1}{8}$?

THE UNIVERSITY OF MANITOBA

March 11, 2005 5:30 pm - 6:30 pm
DEPARTMENT \& COURSE NO: 136.170 EXAMINATION: Calculus II

TEST 2
Page 5 of 5
TIME:_1 HOUR
EXAMINER: Various
[8] 5. Integrate, using any appropriate method.
(a) $\int_{1}^{2} \frac{1}{\mathrm{x}^{2}} \sin \left(\pi+\frac{\pi}{\mathrm{x}}\right) \mathrm{dx}$
(b) $\int(2 x-1) e^{-x} d x$

