April 16, 2005	FINAL EXAMINATION
DEPARTMENT & COURSE NO: <u>136.170</u>	PAGE <u>1 of 8</u>
PAPER NO. <u>234</u>	TIME: <u>2 Hours</u>
EXAMINATION: <u>Calculus 2</u>	EXAMINERS: Various

Values

1. Calculate $\lim_{x \to +\infty} \frac{x \ln(x)}{x^2 + 1}$. Justify your calculations.

5

2. A curve C has parametric equations

$$y = 2t^3 - 6t$$
$$x = 2t^3 + 3t^2$$

 $x = 2t^3 + 3t^2$ Find the co-ordinates of the points on C at which the tangent line to C has slope $\frac{1}{2}$.

April 16, 2005 DEPARTMENT & COURSE NO: 136.170 PAPER NO. 234 EXAMINATION: Calculus 2

- FINAL EXAMINATION PAGE <u>2 of 8</u> TIME: 2 Hours EXAMINERS: Various
- 3. Suppose that g(x) is a differentiable function and that $\int_{0}^{8} (\sqrt{x+1} + 3g'(x)) dx = 24$ If $g(0) = \frac{7}{9}$, calculate the value of g(8).

8

4. Let C be a curve with polar equation $r = \sqrt{\sin(\theta)}$ for $0 \le \theta \le \pi$. Find the area of the region bounded by the positive y-axis, the curve C, and the line $\theta = \frac{2\pi}{3}$.

April 16, 2005	FINAL EXAMINATION
DEPARTMENT & COURSE NO: <u>136.170</u>	PAGE <u>3 of 8</u>
PAPER NO. <u>234</u>	TIME: <u>2 Hours</u>
EXAMINATION: <u>Calculus 2</u>	EXAMINERS: Various

5. Find the area of the portion of the first quadrant bounded between the curves $y=8\sqrt{x}$ and $y=x^2$.

8

6. Let R be the region of the first quadrant bounded below by the x-axis, above by the parabola $y = x^2$, and on the right by the vertical line x = k (where k > 0). The volume of the solid swept out by rotating R around the x-axis equals the volume of the solid swept out by rotating R about the y-axis. What is the value of k? What is this common volume?

April 16, 2005	FINAL EXAMINATION
DEPARTMENT & COURSE NO: <u>136.170</u>	PAGE <u>4 of 8</u>
PAPER NO. <u>234</u>	TIME: <u>2 Hours</u>
EXAMINATION: <u>Calculus 2</u>	EXAMINERS: Various

7. Evaluate $\int_{-\frac{1}{2}}^{\frac{\pi-2}{4}} \sqrt{\sin(2x+1)} \cos(2x+1) dx$. Is your answer bigger than 0.25?

9

8. Evaluate the following integrals:

(a) $\int \tan(2x) \sec^4(2x) dx$

April 16, 2005

DEPARTMENT & COURSE NO: <u>136.170</u>

PAPER NO. <u>234</u>

EXAMINATION: <u>Calculus 2</u>

EXAMINERS: Various

(b)
$$\int \frac{x^3}{\sqrt{9-x^2}} dx$$

(c)
$$\int \frac{2x^2 - x + 2}{x^3 + 2x} dx$$

April 16, 2005	FINAL EXAMINATION
DEPARTMENT & COURSE NO: <u>136.170</u>	PAGE <u>6 of 8</u>
PAPER NO. <u>234</u>	TIME: <u>2 Hours</u>
EXAMINATION: Calculus 2	EXAMINERS: Various

9. Do the following improper integrals converge? If so, to what? Explain.

(a)
$$\int_{0}^{\infty} \frac{\mathrm{d}x}{(2x+1)(x+1)}$$

8

(b)
$$\int_0^1 \frac{e^x}{\sqrt{e^x - 1}} dx$$

April 16, 2005

DEPARTMENT & COURSE NO: 136.170

PAPER NO. <u>234</u>

EXAMINATION: Calculus 2

FINAL EXAMINATION PAGE <u>7 of 8</u> TIME: <u>2 Hours</u> EXAMINERS: <u>Various</u>

10. The curve C has parametric equations

$$x = \frac{t^{3}}{3} + \frac{t^{2}}{2}$$

(0 \le t \le 1).
$$y = \frac{t^{3}}{3} - \frac{t^{2}}{2}$$

What is the length of C?

8

11. Let S be the surface swept out by rotating the curve $y = \frac{x^3}{3}$ ($0 \le x \le 1$) about the x-axis. Compute the surface area of S.

April 16, 2005

DEPARTMENT & COURSE NO: 136.170

PAPER NO. <u>234</u>

EXAMINATION: Calculus 2

FINAL EXAMINATION

PAGE <u>8 of 8</u>

TIME: <u>2 Hours</u>

EXAMINERS: Various

12. Evaluate $\lim_{x \to 0} \begin{pmatrix} 3x \\ \int sin(t^2) dt \\ \frac{2x}{x} \\ \int sin(t^2) dt \\ 0 \end{pmatrix}.$

9

THE END