B01.
MATH 1700: Test \#5 (Fall 2011)

## Solution; marking scheme

1. [8] Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.
[4] (a) $\frac{2}{\left(x^{2}+2 x+2\right)\left(x^{2}+2 x+1\right)}$
[4] (b) $\frac{2}{\left(x^{2}+2\right)^{2}\left(x^{2}+x-2\right)}$

Solution. (a) Since $x^{2}+2 x+1=(x+1)^{2}$ and since $x^{2}+2 x+2$ does not factor further, we should use $\frac{2}{\left(x^{2}+2 x+2\right)\left(x^{2}+2 x+1\right)}=\frac{A x+B}{\left(x^{2}+2 x+2\right)}+\frac{C}{(x+1)}+\frac{D}{(x+1)^{2}}$.
(b) $x^{2}+2$ does not factor, and $x^{2}+x-2=(x-1)(x+2)$. So, we should use $\frac{2}{\left(x^{2}+2\right)^{2}\left(x^{2}+x-2\right)}=\frac{A_{1} x+B_{1}}{x^{2}+2}+\frac{A_{2} x+B_{2}}{\left(x^{2}+2\right)^{2}}+\frac{C}{x-1}+\frac{D}{x+2}$.
2. [11] Compute the integral, or show it diverges:
[5] (a) Compute $\int_{1}^{2} \frac{1}{\sqrt{x-1}} d x$.
[6] (b) Does $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5 x+1}} d x$ converge? Justify! (Hint: comparison test!)

Solution. (a) $\int_{1}^{2} \frac{1}{\sqrt{x-1}} d x=\lim _{t \rightarrow 1^{+}} \int_{t}^{2} \frac{1}{\sqrt{x-1}} d x=\lim _{t \rightarrow 1^{+}}\left(\left.2 \sqrt{x-1}\right|_{t} ^{2}\right)=\lim _{t \rightarrow 1^{+}}(2-2 \sqrt{t-1})=2$.
(b) Since $\sqrt{x^{3}+5 x+1}>\sqrt{x^{3}}$ for $x \geq 1$, we have $\frac{1}{\sqrt{x^{3}+5 x+1}}<\frac{1}{x^{3 / 2}}$. Since $\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x$ converges, by the comparison test, so does $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+5 x+1}} d x$.
3. [6] Compute the length of the curve $y=\frac{2}{3} x^{3 / 2}$ for $0 \leq x \leq 1$.

## Solution.

$$
L=\int_{0}^{1} \sqrt{1+\left(\left(\frac{2}{3} x^{3 / 2}\right)^{\prime}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+\left(x^{1 / 2}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+x} d x=\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{0} ^{1}=\frac{2}{3} 2^{3 / 2}-\frac{2}{3} .
$$

