B03.

MATH 1700: Test \#3 (Fall 2011)

Solution; marking scheme

[17] 1. Consider the curves $y=-x^{2}+1$ and $y=0$. They bound a regions R.
[3] (a) Sketch R.
[7] (b) Set up, but do NOT evaluate the integral for volume of the solid obtained by rotating R around the vertical line $x=1$. Use the method of shells.
[7] (c) Set up, but do NOT evaluate the integral for volume of the solid obtained by rotating R around the vertical line $x=1$. Use the method of washers.

Solution.

(a) R is a convex parabola crossing the x-axis at -1 and 1 (sketch ...).
(b) $\int_{-1}^{1} 2 \pi(1-x)\left(1-x^{2}\right) d x$.
(c) $\int_{0}^{1}\left(\pi(1+\sqrt{1-y})^{2}-\pi(1-\sqrt{1-y})^{2}\right) d x$.
[both (b) and (c) yield 8/3.]
[7] 2. [4] (a) Find the inverse function of $y=\frac{2 x+1}{x-1}$.
[3] (b) Differentiate $f(x)=\left(\cos ^{-1} x\right)\left(\sin ^{-1} x\right)$ with respect to x.

Solution.

(a) Solving for x in terms of y :

$$
\begin{aligned}
& y=\frac{2 x+1}{x-1} \Leftrightarrow y(x-1)=(2 x+1) \Leftrightarrow y x-2 x=y+1 \Leftrightarrow x=\frac{y+1}{y-2} ; \text { so the inverse is } \\
& y=\frac{x+1}{x-2} .
\end{aligned}
$$

(b) $f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}\left(\sin ^{-1} x\right)+\frac{1}{\sqrt{1-x^{2}}}\left(\cos ^{-1} x\right)$.

