Solution; marking scheme

[13] 1. Use L'Hospital rule to evaluate the following limits.

[5] (a)
$$\lim_{x \to 0} \frac{\sin x^2}{x}$$

[8] (b) $\lim_{x \to 0^+} x^x$

Solution.

(a)
$$\lim_{x \to 0} \frac{\sin x^2}{x} = (type \frac{0}{0}) = \lim_{x \to 0} \frac{2x \cos x^2}{1} = 0$$

(b) Write $y = x^x$. So $\ln y = \ln x^x = x \ln x$. We have
 $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = (type^{-\infty}/_{\infty}) = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$.
So $\lim_{x \to 0^+} \ln y = 0$; hence $\ln (\lim_{x \to 0^+} y) = 0$; hence $\lim_{x \to 0^+} y = e^0 = 1$.

[5] 2. Sketch the following curve defined through parametric equations: $x = 3\cos 2t$, $y = -3\sin 2t$, $t \in (-\infty, \infty)$. Hint: eliminate the parameter to find the Cartesian equation of the curve.

Solution. $x^2 + y^2 = 9$, so this is the circle centered at the origin with radius 3. (Sketch)

[7] 3. Find the slope of the tangent line to the curve $r = 2\theta$ (given in polar coordinates) at the point when $\theta = \frac{\pi}{2}$. Simplify.

Solution. We have $x = r \cos \theta = 2\theta \cos \theta$, and $y = r \sin \theta = 2\theta \sin \theta$. So, $\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\sin\theta + 2\theta\cos\theta}{2\cos\theta - 2\theta\sin\theta}$. The slope is the value of this expression when $\theta = \frac{\pi}{2}$, which is $-\frac{2}{\pi}$.

B01.