B01.
MATH 1700: Test \#1 (Fall 2011)

Solution; marking scheme

[13] 1. Use L'Hospital rule to evaluate the following limits.
[5] (a) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}$
[8] (b) $\lim _{x \rightarrow 0^{+}} x^{x}$
Solution.
(a) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=($ type $0 / 0)=\lim _{x \rightarrow 0} \frac{2 x \cos x^{2}}{1}=0$
(b) Write $y=x^{x}$. So $\ln y=\ln x^{x}=x \ln x$. We have
$\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\left(\right.$ type $\left.^{-\infty} / \infty\right)=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}(-x)=0$.
So $\lim _{x \rightarrow 0^{+}} \ln y=0$; hence $\ln \left(\lim _{x \rightarrow 0^{+}} y\right)=0$; hence $\lim _{x \rightarrow 0^{+}} y=e^{0}=1$.
[5] 2. Sketch the following curve defined through parametric equations: $x=3 \cos 2 t$, $y=-3 \sin 2 t, t \in(-\infty, \infty)$. Hint: eliminate the parameter to find the Cartesian equation of the curve.

Solution. $x^{2}+y^{2}=9$, so this is the circle centered at the origin with radius 3. (Sketch)
[7] 3. Find the slope of the tangent line to the curve $r=2 \theta$ (given in polar coordinates) at the point when $\theta=\frac{\pi}{2}$. Simplify.

Solution. We have $x=r \cos \theta=2 \theta \cos \theta$, and $y=r \sin \theta=2 \theta \sin \theta$. So,
$\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{2 \sin \theta+2 \theta \cos \theta}{2 \cos \theta-2 \theta \sin \theta}$. The slope is the value of this expression when $\theta=\frac{\pi}{2}$, which is
$-\frac{2}{\pi}$.

