MATH 1700: Test #3 (Fall 2008) Solutions

[9] 1. Find the area of the region bounded by the curves $y = -x^2 + 2$ and y = 1. Sketch *R*.

[8] 2. Find the area of bounded by the spiral $r = \theta$, the x-axis and the y-axis, for $0 \le \theta \le \frac{\pi}{2}$.

Solution: Area =
$$\int_{0}^{\pi/2} \frac{1}{2} r(\theta)^2 d\theta = \int_{0}^{\pi/2} \frac{1}{2} \theta^2 d\theta = \frac{1}{2} \frac{\theta^3}{3} \bigg|_{0}^{\pi/2} = \frac{1}{6} \bigg(\frac{\pi}{2}\bigg)^3.$$

[9] 3. Set up, but do not evaluate, the integral for the volume of the solid we get by rotating the region bounded by the curves $y = -x^2 + 2$ and y = 1 around the x-axis.

Solution. Volume =
$$\int_{-1}^{1} [(-x^2+2)^2\pi - 1^2\pi] dx$$
.