B3.

MATH 1700: Test \#3 (Fall 2008)

Solutions
[9] 1. Find the area of the region bounded by the curves $y=-x^{2}+2$ and $y=1$. Sketch R.

Solution:

Solving $y=-x^{2}+2$ and $y=1$ gives $x=-1$ and $x=1$. So, the area is $\int_{-1}^{1}\left[\left(-x^{2}+2\right)-1\right] d x=2 \int_{0}^{1}\left(-x^{2}+1\right) d x=\left.2\left(-\frac{x^{3}}{3}+x\right)\right|_{0} ^{1}=2\left(1-\frac{1}{3}\right)$.
[8] 2. Find the area of bounded by the spiral $r=\theta$, the x-axis and the y-axis, for $0 \leq \theta \leq \frac{\pi}{2}$.
Solution: Area $=\int_{0}^{\pi / 2} \frac{1}{2} r(\theta)^{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2} \theta^{2} d \theta=\left.\frac{1}{2} \frac{\theta^{3}}{3}\right|_{0} ^{\pi / 2}=\frac{1}{6}\left(\frac{\pi}{2}\right)^{3}$.
[9] 3. Set up, but do not evaluate, the integral for the volume of the solid we get by rotating the region bounded by the curves $y=-x^{2}+2$ and $y=1$ around the x-axis.

Solution. Volume $=\int_{-1}^{1}\left[\left(-x^{2}+2\right)^{2} \pi-1^{2} \pi\right] d x$.

