MATH 1700: Test #2 (Fall 2008) Solutions

[8] 1. Use the definition only to express the definite integral $\int_{0}^{1} (x^3 + 1) dx$ as a limit of a specific sum. Do not compute that limit (or the integral). [For example, we figured out in class that $\int_{0}^{1} x^2 dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(i \frac{1}{n} \right)^i \frac{1}{n}$; you should go that far for Question 1.]

Solution: Subdividing the interval [0,2] into *n* many parts gives intervals of size $\frac{2}{n}$ each. The right hand edges of these intervals are $\frac{2}{n}$, $2\frac{2}{n}$, $3\frac{2}{n}$, ..., $i\frac{2}{n}$, ..., $n\frac{2}{n}$. (Note: choosing left-hand side edges, or any other points in the small intervals is also correct) So,

$$\int_{0}^{2} (x^{3} + 1) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(i \frac{2}{n} \right)^{3} + 1 \right] \frac{2}{n}.$$

[7] **2.** Evaluate:

(a)
$$\frac{d}{dx} \int_{0}^{1} \ln(1+e^{t}) dt$$

(b) $\frac{d}{dx} \int_{0}^{\sin t} \ln(1+e^{t}) dt$
Solution. (a) $\frac{d}{dx} \int_{0}^{1} \ln(1+e^{t}) dt = 0$, since $\int_{0}^{1} \ln(1+e^{t}) dt$ is a constant.
(b) By the Fundamental Theorem of Calculus, and by the chain rule, we have:

$$\frac{d}{dx} \int_{0}^{\sin x} \ln(1+e^{t}) dt = [\ln(1+e^{\sin x})]\cos x$$

[9] 3. Evaluate the following integrals: (a) $\int_{-1}^{1} \frac{x^3}{x^{100} + 1} dx$ (b) $\int_{0}^{1} e^x \sqrt{1 + e^x} dx$

Solution. (a) The function $f(x) = \frac{x^3}{x^{100} + 1}$ is odd, since $f(-x) = \frac{(-x)^3}{(-x)^{100} + 1} = \frac{-x^3}{x^{100} + 1} = -f(x)$. Because of that and since the limits of integration are mutual negatives $\int_{-\infty}^{1} \frac{x^3}{x^3} dx = 0$.

Because of that, and since the limits of integration are mutual negatives, $\int_{-1}^{1} \frac{x^3}{x^{100} + 1} dx = 0.$ (b) Use the substitution $u = 1 + e^x$ so that $du = e^x dx$. With that we have

(b) Use the substitution
$$u = 1 + e^{-1}$$
, so that $uu = e^{-1}ux$. With that we have

$$\int_{0}^{1} e^{x}\sqrt{1 + e^{x}} \, dx = \int_{x=0}^{x=1} \sqrt{u} \, du = \frac{2}{3}u^{\frac{3}{2}} \begin{vmatrix} x = 1 \\ x = 0 \end{vmatrix} = \frac{2}{3}(1 + e^{x})^{\frac{3}{2}} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{2}{3}(1 + e)^{\frac{3}{2}} - \frac{2}{3}(1 + 1)^{\frac{3}{2}}.$$