MATH 1700: Test \#2 (Fall 2008) Solutions

[8] 1. Use the definition only to express the definite integral $\int_{0}^{2}\left(x^{3}+1\right) d x$ as a limit of a specific sum. Do not compute that limit (or the integral). [For example, we figured out in class that $\int_{0}^{1} x^{2} d x=\lim _{n \rightarrow+} \sum_{i=1}^{n}\left(i \frac{1}{n}\right)^{2} \frac{1}{n}$; you should go that far for Question 1.]

Solution: Subdividing the interval [0,2] into n many parts gives intervals of size $\frac{2}{n}$ each. The right hand edges of these intervals are $\frac{2}{n}, 2 \frac{2}{n}, 3 \frac{2}{n}, \ldots, i \frac{2}{n}, \ldots, n \frac{2}{n}$. (Note: choosing left-hand side edges, or any other points in the small intervals is also correct) So, $\int_{0}^{2}\left(x^{3}+1\right) d x=\lim _{x \rightarrow-} \sum_{i=1}^{n}\left[\left(i \frac{2}{n}\right)^{3}+1\right] \frac{2}{n}$.
[7] 2. Evaluate:
(a) $\frac{d}{d x} \int_{0}^{1} \ln \left(1+e^{2}\right) d t$
(b) $\frac{d}{d x} \int_{0}^{\operatorname{sn} x} \ln \left(1+e^{t}\right) d t$

Solution.
(a) $\frac{d}{d x} \int_{0}^{1} \ln \left(1+e^{t}\right) d t=0$, since $\int_{0}^{1} \ln \left(1+e^{t}\right) d t$ is a constant.
(b) By the Fundamental Theorem of Calculus, and by the chain rule, we have:

$$
\frac{d}{d x} \int_{0}^{\sin x} \ln \left(1+e^{t}\right) d t=\left[\ln \left(1+e^{\sin x}\right)\right] \cos x
$$

[9] 3. Evaluate the following integrals:
(a) $\int_{-1}^{1} \frac{x^{3}}{x^{100}+1} d x$
(b) $\int_{0}^{1} e^{x} \sqrt{1+e^{x}} d x$

Solution. (a) The function $f(x)=\frac{x^{3}}{x^{100}+1}$ is odd, since $f(-x)=\frac{(-x)^{3}}{(-x)^{160}+1}=\frac{-x^{3}}{x^{100}+1}=-f(x)$.
Because of that, and since the limits of integration are mutual negatives, $\int_{-1}^{1} \frac{x^{3}}{x^{100}+1} d x=0$.
(b) Use the substitution $u=1+e^{x}$, so that $d u=e^{x} d x$. With that we have $\int_{0}^{1} e^{x} \sqrt{1+e^{x}} d x=\int_{x=0}^{x=1} \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}\left|\begin{array}{l}x=1 \\ x=0\end{array}=\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}\right|_{0}^{1}=\frac{2}{3}(1+e)^{\frac{3}{2}}-\frac{2}{3}(1+1)^{\frac{3}{2}}$.

