B2. MATH 1700: Test #2 (Fall 2008)

Solutions

[8] 1. Use the definition only to express the definite integral J-(.r1 + 1)dx as a limit of a
specific sum. Do not compute that limit (or the integral). [For example, we figured out in class
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that Irdx = lim 2(1’—] —; you should go that far for Question 1.]
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Solution: Subdividing the interval [0,2] into » many parts gives intervals of size — each. The right
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hand edges of these intervals are —, 2—, 3—, ..., i—, ..., n—. (Note: choosing left-hand side
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edges, or any other points in the small intervals is also correct) So,
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[7] 2. Evaluate:
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(a) E[l"(l” ) dt
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(b) - Jln(H—e)dt
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Solution. (a) d_ Iln(l +e')dt =0, since Iln(l +¢'} dr is a constant.
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(b) By the Fundamental Theorem of Calculus, and by the chain rule, we have:
o Iln(l +e')dr =[In(l+¢e"""))cosx
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[9] 3. Evaluate the following integrals:
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(b) Ie‘\"l+e‘ dx
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Solution. (a) The function f{x)=—; is odd, since f(—x)= ( ,..), == =—f(x).
g | (-x) +1 x +1
.
Because of that, and since the limits of integration are mutual negatives, I""—l dx=0.
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(b) Use the substitution = 1+¢", so that du= e"dx . With that we have
1 k=l ' \ { |
f — 2 xX= 2 al 2 2
eNVl+e dx= |Vudu=—-u’ = —(l1+¢&")°? = —(I+e)" —=(+1)* .
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