1. Evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{x^2 + x}{e^x}$$

(b) $\lim_{x \to \infty} \frac{x^2 + x}{e^x}$
Solution: (a) $\lim_{x \to 0} \frac{x^2 + x}{e^x} = 0$.
(b) $\lim_{x \to \infty} \frac{x^2 + x}{e^x} = \lim_{x \to \infty} \frac{2x + 1}{e^x} = \lim_{t \to t} \lim_{x \to \infty} \frac{2}{e^x} = 0$.
2. Find $\frac{d^2y}{dx^2}$ at the point when $t = 1$ if $x = 3 + t$ and $y = t^2 - t^4$.
Solution: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t - 4t^3}{1}; \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{2 - 12t^2}{1} = 2 - 12t^2$. So, at $t = 1$ we get $\frac{d^2y}{dx^2} = 2 - 12 = -10$.

3. Find the equation of the tangent line to the curve $r = 1 + 2\cos\theta$ (in polar coordinates) at the point when $\theta = \frac{\pi}{2}$. Solution: $x = r\cos\theta = (1 + 2\cos\theta)\cos\theta$, $y = r\sin\theta = (1 + 2\cos\theta)\sin\theta$. At $\theta = \frac{\pi}{2}$ we compute

x = 0 and y = 1.Further: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos\theta - 2\sin^2\theta + 2\cos^2\theta}{-\sin\theta - 4\cos\theta\sin\theta}$. When $\theta = \frac{\pi}{2}$ we find $\frac{dy}{dx} = \frac{-2}{-1} = 2$. So, the tangent we want is y - 1 = 2x.