

B1.

MATH 1700: Test #1 (Fall 2008)
Solutions

1. Evaluate the following limits:

(a) $\lim_{x \rightarrow 0} \frac{x^2 + x}{e^x}$

(b) $\lim_{x \rightarrow \infty} \frac{x^2 + x}{e^x}$

Solution: (a) $\lim_{x \rightarrow 0} \frac{x^2 + x}{e^x} = 0$.

(b) $\lim_{x \rightarrow \infty} \frac{x^2 + x}{e^x} \stackrel{\text{H}\ddot{\text{o}}\text{pital}}{=} \lim_{x \rightarrow \infty} \frac{2x + 1}{e^x} \stackrel{\text{H}\ddot{\text{o}}\text{pital}}{=} \lim_{x \rightarrow \infty} \frac{2}{e^x} = 0$.

2. Find $\frac{d^2y}{dx^2}$ at the point when $t=1$ if $x=3+t$ and $y=t^2-t^4$.

Solution: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t-4t^3}{1}$; $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{2-12t^2}{1} = 2-12t^2$. So, at $t=1$ we get

$$\frac{d^2y}{dx^2} = 2-12 = -10.$$

3. Find the equation of the tangent line to the curve $r=1+2\cos\theta$ (in polar coordinates) at the point when $\theta=\frac{\pi}{2}$.

Solution: $x=r\cos\theta=(1+2\cos\theta)\cos\theta$, $y=r\sin\theta=(1+2\cos\theta)\sin\theta$. At $\theta=\frac{\pi}{2}$ we compute $x=0$ and $y=1$.

Further: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos\theta-2\sin^2\theta+2\cos^2\theta}{-\sin\theta-4\cos\theta\sin\theta}$. When $\theta=\frac{\pi}{2}$ we find $\frac{dy}{dx} = \frac{-2}{-1} = 2$. So, the tangent we want is $y-1=2x$.