B1.

## MATH 1700: Test \#1 (Fall 2008)

## Solutions

1. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{e^{x}}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{e^{x}}$

Solution: (a) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{e^{x}}=0$.

2. Find $\frac{d^{2} y}{d x^{2}}$ at the point when $t=1$ if $x=3+t$ and $y=t^{2}-t^{4}$.

Solution: $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t-4 t^{3}}{1} ; \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{2-12 t^{2}}{1}=2-12 t^{2}$. So, at $t=1$ we get $\frac{d^{2} y}{d x^{2}}=2-12=-10$.
3. Find the equation of the tangent line to the curve $r=1+2 \cos \theta$ (in polar coordinates) at the point when $\theta=\frac{\pi}{2}$.
Solution: $x=r \cos \theta=(1+2 \cos \theta) \cos \theta, y=r \sin \theta=(1+2 \cos \theta) \sin \theta$. At $\theta=\frac{\pi}{2}$ we compute $x=0$ and $y=1$.

$$
d y
$$

Further: $\frac{d y}{d x}=\frac{\frac{d \theta}{d x}}{\frac{d \theta}{d \theta}}=\frac{\cos \theta-2 \sin ^{2} \theta+2 \cos ^{2} \theta}{-\sin \theta-4 \cos \theta \sin \theta}$. When $\theta=\frac{\pi}{2}$ we find $\frac{d y}{d x}=\frac{-2}{-1}=2$. So, the tangent we want is $y-1=2 x$.

