Values

[16] 1. Find each limit, if it exists.

(a)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{x^3 - 3x + 2}$$

Solution:
$$\lim_{x \to 1} \frac{1 - x + \ln x}{x^3 - 3x + 2} \stackrel{0/0}{=} \lim_{x \to 1} \frac{-1 + \frac{1}{x}}{3x^2 - 3} \stackrel{0/0}{=} \lim_{x \to 1} \frac{-\frac{1}{x^2}}{6x} = -\frac{1}{6}$$

$$(b) \qquad \lim_{x\to 0} \left(1+\sin(\pi x)\right)^{\frac{1}{x}}$$

Solution. Set
$$y = (1 + \sin(\pi x))^{\frac{1}{x}}$$
. So $\ln y = \frac{\ln(1 + \sin(\pi x))}{x}$. Then

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln(1 + \sin(\pi x))}{x} \stackrel{_{0/0}}{=} \lim_{H} \lim_{x \to 0} \frac{\frac{1}{(1 + \sin(\pi x))}(\cos(\pi x))\pi}{1} = -\pi \text{ and so}$$

$$\lim_{x \to 0} (1 + \sin(\pi x))^{\frac{1}{x}} = e^{-\pi}.$$

[12] 2. Evaluate
(a)
$$\int_{0}^{1} x (2x-1)^{20} dx$$

Solution. Use u = 2x - 1 so that du = 2dx. Get: $\int_{0}^{1} x (2x - 1)^{20} dx = \int_{-1}^{1} \frac{u + 1}{2} (u)^{20} \frac{du}{2} = \frac{1}{4} \left(\frac{u^{22}}{22} + \frac{u^{21}}{21} \right) \Big|_{-1}^{1} = \frac{1}{42}.$ (b) $\int e^{\cos x} \sin x \, dx$

Solution. Use the substitution $u = \cos x$ and get $\int e^{\cos x} \sin x \, dx = -e^{\cos x} + c$.

[4] 3. (a) Use the definition of a definite integral to write $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left[1 + \left(\frac{i}{n}\right)^3 \right]$ as a definite integral.

Solution. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left[1 + \left(\frac{i}{n}\right)^{3} \right] = \int_{0}^{1} (1 + x^{3}) dx$.

(b) Use your answer in part (a) to find the value of the limit $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left[1 + \left(\frac{i}{n}\right)^{3} \right].$

Solution. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left[1 + \left(\frac{i}{n}\right)^{3} \right] = \int_{0}^{1} (1+x^{3}) dx = x + \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{5}{4}.$

THE UNIVERSITY OF MANITOBAOctober 26, 20075:30 – 6:30 PMMIDTERM EXAMINATIONDEPARTMENT & COURSE NO: Math 1700PAGE NO: 20f 4EXAMINATION: Calculus 2EXAMINERS: Kalajdzievski, Korytowski

Values

[9] 4. (a) Sketch the curve $r = 3\sin(2\theta)$. State the polar coordinates of at least three points on this graph.

Solution.

(b) Write the integral which represents the area of the region that lies inside

the curve $r = 4\cos\theta$ and above the line $\theta = \frac{\pi}{4}$ Draw a rough sketch of the above two curves on the same coordinate system.

DO NOT EVALUATE THE INTEGRAL

[8] 5. Find the area of the region bounded by the curves $y = x^2$ and $x = y^2$. [Draw a rough sketch of the above two curves on the same coordinate system.]

The intersection points are (0,0) and (1,1). The area of the region is $\int_{0}^{2} (\sqrt{x} - x^{2}) dx = \frac{1}{3}.$

[11] 6. Write an integral which represents each volume.
(a) The volume of the solid obtained when the region bounded by the curve y = sin x with 0 ≤ x ≤ π, and the x-axis is rotated about the y-axis. DO NOT EVALUATE THIS INTEGRAL.

$$V = \int_{0}^{\pi} 2\pi x \sin x \, dx$$

(b) The volume of the solid obtained when the region enclosed by $y = x^2$ and $y = 2 - x^2$ is revolved about the x-axis. DO NOT EVALUATE THIS INTEGRAL.

$$V = \int_{-1}^{1} \pi [(2 - x^2)^2 - (x^2)^2] dx.$$