136.151: Test \#4 20 minutes

Name: \qquad Student Number: \qquad

1. Find the absolute maximum and the absolute minimum of the function $f(x)=x^{3}-3 x^{2}+1$ over the interval $[1,4]$. Show your work (that is, justify your answer).

Solution. $f^{\prime}(x)=3 x^{2}-6 x$, and so the critical points come from solving $3 x^{2}-6 x=0$, that is, $3 x(x-2)=0$. The solutions are obviously $x=0$ and $x=2$. The former is out of the interval we consider, so we ignore it.

At the critical points: $f(2)=-3$
At the edges: $f(1)=-1, f(4)=17$
So, we have the absolute maximum of 17 when $x=4$ and the absolute minimum of -3 when $x=2$.
2. The perimeter if a rectangle is 40 . Find the dimensions of the rectangle such that its area is as large as possible. Justify your answer.

Solution. If the dimensions are denoted by x and y, then the perimeter is $P=2 x+2 y$ and the area is $A=x y$. Since $P=40$ we have that $40=2 x+2 y$, from where we find that $y=20-x$. So, the area is $A=x(20-x)=20 x-x^{2}$. We compute $A^{\prime}=20-2 x$, and so the only critical point is $x=10$. Since $A^{\prime \prime}=-2<0$ the critical point yields a local maximum. Since it is the only critical point, this local maximum must be the absolute maximum. So, the desired dimensions are $x=10$ and $y=20-10=10$.
3. Suppose $y=-3 x+4$ and suppose y is increasing at the rate of $3 \mathrm{~m} / \mathrm{sec}$. Find the rate of change of x. Show your work (that is, justify your answer).

Solution. Differentiate with respect to time to get $\frac{d y}{d t}=-3 \frac{d x}{d t}$. We are given that $\frac{d y}{d t}=3 \mathrm{~m} / \mathrm{sec}$ and so $3=-3 \frac{d x}{d t}$, from where we find that $\frac{d x}{d t}=-1 \mathrm{~m} / \mathrm{sec}$.

