\qquad Student Number: \qquad

1. Find $\frac{d y}{d x}$ at $(1,1)$ if $x y^{3}+x^{2} y=2$ defines y as a function on x.

Solution. Differentiate the equation to get $y^{3}+x\left(3 y^{2}\right) \frac{d y}{d x}+2 x y+x^{2} \frac{d y}{d x}=0$. Substitute $x=1$ and $y=1$ to get $1+3 \frac{d y}{d x}+2+\frac{d y}{d x}=0$, from where we find that $\frac{d y}{d x}=-\frac{3}{4}$.
2. Find all critical points of the function $f(x)=x^{3}+3 x^{2}+3$, then classify them using the second derivative test.

Solution. $f^{\prime}(x)=3 x^{2}+6 x$. Solving $3 x^{2}+6 x=0$ gives $x=0$ or $x=-2$. These are the critical points. Compute $f^{\prime \prime}(x)=6 x+6$, and so $f^{\prime \prime}(0)=6>0$ (local minimum), $f^{\prime \prime}(-2)=-6<0$ (local maximum).
3. Find all inflection points of the function $f(x)=x^{4}+x^{3}$. Justify your answer.

Solution. Compute $f^{\prime}(x)=4 x^{3}+3 x^{2}$, and $f^{\prime \prime}(x)=12 x^{2}+12 x=12 x(x+1)$. Solve to get $x=0$ or $x=-1$. These are the only potential inflection points.
Taka a point to the left of -1 ; say at $x=-2, f^{\prime \prime}(-2)>0$; so there, $f(x)$ is concave up (U).
Take a point between 0 and 1 , say $\frac{1}{2}$ and notice that $f^{\prime \prime}(-1 / 2)<0$; so $f(x)$ is concave down (\cap) there.
Take a point to the right of 0 , say 100 , and notice that $f^{\prime \prime}(100)>0$; so $f(x)$ is concave up (U) there.
Since the function does change concavity at $x=0$ and $x=-1$, these are indeed inflection points.

