136.151: Test \#1 Solutions 20 minutes

Name: \qquad Student Number: \qquad

1. Consider the following three lines.
$l_{1}:-2 y=-2 x+1$
$l_{2}:-y+x=10$
$l_{3}: y=-2-x$
Find the slopes of each of the lines. Which of these lines are mutually parallel, which are mutually perpendicular? Why?

Solution.

For \boldsymbol{l}_{1} we find that $y=x-\frac{1}{2}$ so that the slope of that line is $m_{1}=1$.
For l_{2} we find that $y=x-10$ so that the slope of that line is $m_{2}=1$.
For l_{3} we are given that $y=-x-2$ so that the slope of that line is $m_{3}=-1$.
Since $m_{1}=m_{2}$, the first two lines are parallel. Since $m_{1}=-\frac{1}{m_{3}}$, the first and the third line are perpendicular. Consequently, so are the second and the third.
2. Use interval notation to describe the domain of the function $\frac{\sqrt{x^{2}+1}}{\sqrt{1-x}}$

Solution.

The denominator should not be 0 , so that $1-x \neq 0$, which tell us that $x \neq 1$. The expression inside the root in the denominator must be ≥ 0, i.e., $1-x \geq 0$, i.e., $x \leq 1$. Together with the first sentence we have that $x<1$. The expression inside the root in the numerator must also be at ≥ 0; but, because $x^{2} \geq 0$, that is true always for all numbers x. So the root in the numerator places no restrictions on x. Summarizing, the domain of the function is $(-\infty, 1)$.
3. (a) Is the function $f(x)=\frac{x|x|}{1+2 x^{2}}$ odd, even or neither? Why?
(b) Give an example of a function that is both even and odd.
(c) Show that for every two odd functions $f(x)$ and $g(x)$ their product $h(x)=f(x) g(x)$ is an even function.

Solution.

(a) $f(-x)=\frac{(-x)|-x|}{1+2(-x)^{2}}=\frac{-x|x|}{1+2 x^{2}}=-f(x)$, and so the function is odd.
(b) One such example is the function $f(x)=0$.
(c) $h(-x)=f(-x)(g(-x)=(-f(x))(-g(x))=f(x) g(x)=h(x)$.

