Name:__

Student Number: _____

1. Consider the following three lines.

 $l_{1}: -2y = -2x + 1$ $l_{2}: -y + x = 10$ $l_{3}: y = -2 - x$

Find the slopes of each of the lines. Which of these lines are mutually parallel, which are mutually perpendicular? Why? **Solution.**

For l_1 we find that $y = x - \frac{1}{2}$ so that the slope of that line is $m_1 = 1$. For l_2 we find that y = x - 10 so that the slope of that line is $m_2 = 1$. For l_3 we are given that y = -x - 2 so that the slope of that line is $m_3 = -1$.

Since $m_1 = m_2$, the first two lines are parallel. Since $m_1 = -\frac{1}{m_3}$, the first and the third line are perpendicular. Consequently, so are the second and the third.

2. Use interval notation to describe the domain of the function
$$\frac{\sqrt{x^2+1}}{\sqrt{1-x}}$$

Solution.

The denominator should not be 0, so that $1 - x \neq 0$, which tell us that $x \neq 1$. The expression inside the root in the denominator must be ≥ 0 , i.e., $1 - x \geq 0$, i.e., $x \leq 1$. Together with the first sentence we have that x < 1. The expression inside the root in the numerator must also be at ≥ 0 ; but, because $x^2 \geq 0$, that is true always for all numbers x. So the root in the numerator places no restrictions on x. Summarizing, the domain of the function is $(-\infty, 1)$.

3. (a) Is the function $f(x) = \frac{x|x|}{1+2x^2}$ odd, even or neither? Why? (b) Give an example of a function that is both even and odd.

(c) Show that for every two odd functions f(x) and g(x) their product h(x) = f(x)g(x) is an even function.

Solution.

- (a) $f(-x) = \frac{(-x)|-x|}{1+2(-x)^2} = \frac{-x|x|}{1+2x^2} = -f(x)$, and so the function is odd.
- (b) One such example is the function f(x) = 0.
- (c) h(-x) = f(-x)(g(-x) = (-f(x))(-g(x)) = f(x)g(x) = h(x).