

Midterm Exam 136.151
BRIEF Solutions

Values

[12] 1. Evaluate the limit or show that it does not exist.

[4] (a) $\lim_{x \rightarrow 2} \frac{\sqrt{x+2} - 2}{x-2}$

$$\lim_{x \rightarrow 2} \frac{\sqrt{x+2} - 2}{x-2} = \lim_{x \rightarrow 2} \frac{\sqrt{x+2} - 2}{x-2} \frac{\sqrt{x+2} + 2}{\sqrt{x+2} + 2} = \lim_{x \rightarrow 2} \frac{x+2-4}{(x-2)(\sqrt{x+2} + 2)} = \lim_{x \rightarrow 2} \frac{1}{(\sqrt{x+2} + 2)} = \frac{1}{4}$$

[4] (b) $\lim_{x \rightarrow \infty} (x - \sqrt{1+x^2})$

$$\lim_{x \rightarrow \infty} (x - \sqrt{1+x^2}) = \lim_{x \rightarrow \infty} (x - \sqrt{1+x^2}) \frac{x + \sqrt{1+x^2}}{x + \sqrt{1+x^2}} = \lim_{x \rightarrow \infty} \frac{x^2 - 1 - x^2}{x + \sqrt{1+x^2}} = \lim_{x \rightarrow \infty} \frac{-1}{x + \sqrt{1+x^2}} = 0,$$

since the denominator in the last limit obviously tends to infinity while the numerator is -1 .

(Note: $\lim_{x \rightarrow \infty} (x - \sqrt{1+x^2}) = \infty - \infty = 0$ or any variant of that false argument is worth 0 marks.)

[4] (c) $\lim_{x \rightarrow 2} \frac{x-2}{|x-2|}$

$$\lim_{x \rightarrow 2^+} \frac{x-2}{|x-2|} = \lim_{x \rightarrow 2^+} \frac{x-2}{x-2} = \lim_{x \rightarrow 2^+} 1 = 1,$$

$$\lim_{x \rightarrow 2^-} \frac{x-2}{|x-2|} = \lim_{x \rightarrow 2^-} \frac{x-2}{-(x-2)} = \lim_{x \rightarrow 2^-} (-1) = -1.$$

Since the two one-sided limits are not equal, the original limit does not exist.

Values

[7] 2. Let $f(x) = 3x^2 + x$. Find $f'(2)$ using **ONLY** the definition of the derivative.

$$\begin{aligned} f'(2) &= \lim_{h \rightarrow 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \rightarrow 0} \frac{3(2+h)^2 + (2+h) - 14}{h} = \\ &= \lim_{h \rightarrow 0} \frac{3(4+4h+h^2) + (2+h) - 14}{h} = \lim_{h \rightarrow 0} \frac{13h+3h^2}{h} = \lim_{h \rightarrow 0} 13 + 3h = 13 \end{aligned}$$

[13] 3. Compute the following derivatives. Do NOT simplify your answer after differentiating.

[4] (a) $f'(x)$ if $f(x) = \sin(\sqrt{1+x^2})$

$$f'(x) = \cos(\sqrt{1+x^2}) \frac{1}{2\sqrt{1+x^2}} 2x.$$

[4] (b) $g''(x)$ if $g(x) = \frac{x}{1-x}$

$$g'(x) = \frac{(1-x) - x(-1)}{(1-x)^2} = \frac{1}{(1-x)^2}.$$

$$g''(x) = \left((1-x)^{-2} \right)' = -2(1-x)^{-3}(-1) = \frac{2}{(1-x)^3}.$$

[5] (c) $h'(x)$ if $h(x) = x^{(x-1)}$.

Start with $h(x) = x^{(x-1)}$ and apply the natural logarithm on both sides. Get $\ln h(x) = \ln x^{(x-1)}$, and so $\ln h(x) = (x-1)\ln x$. Now differentiate implicitly with respect to x : $\frac{1}{h(x)}h'(x) = \ln x + \frac{x-1}{x}$, so that $h'(x) = h(x)(\ln x + \frac{x-1}{x}) = x^{x-1}(\ln x + \frac{x-1}{x})$.

[8] 4. Let $f(x) = e^{\cos x}$
 [4] (a) Find $f''(0)$.

$$\begin{aligned}f'(x) &= e^{\cos x}(-\sin x) \\f''(x) &= e^{\cos x}(-\sin x)(-\sin x) + e^{\cos x}(-\cos x) \\f''(0) &= 0 + e^{\cos 0}(-1) = -e.\end{aligned}$$

[4] (b) Find the equation of the tangent line of the curve $f(x) = e^{\cos x}$ at the point when $x = \frac{\pi}{2}$.

The slope of that tangent line is $f'(\frac{\pi}{2}) = e^{\cos \frac{\pi}{2}}(-\sin \frac{\pi}{2}) = -1$. So, the equation of the tangent is $y = (-1)x + b$. When $x = \frac{\pi}{2}$ we see that $f(\frac{\pi}{2}) = 1$. Since the line passes through that point we have that $1 = (-1)\frac{\pi}{2} + b$, from where we find that $1 + \frac{\pi}{2} = b$. So, the equation of the tangent line is $y = (-1)x + 1 + \frac{\pi}{2}$.

[10] 5. The equation $y^5 - y \cos x = 0$ defines y as a function on x .

[6] (a) Evaluate $\frac{dy}{dx}$ at the point $(0,1)$.

Differentiate implicitly to get $5y^4 \frac{dy}{dx} - (\frac{dy}{dx} \cos x + y(-\sin x)) = 0$. At the point $(0,1)$ we get $5 \frac{dy}{dx} - \frac{dy}{dx} = 0$ from where we find that $\frac{dy}{dx} = 0$

[4] (b) Find an equation of the tangent line to the curve $y^5 - y \cos x = 0$ at the point $(0,1)$.

Since, by part (a), the slope of the tangent is 0, its equation is $y = b$, where b is the y -intercept. But it is given that $b = 1$ and so the equation is $y = 1$.

[4] 6. [bonus] Suppose $f(x)$ and $g(x)$ are continuous at $x = a$. Show that the function $f(x)g(x)$ is also continuous at $x = a$.

$\lim_{x \rightarrow a} f(x)g(x) = \left(\lim_{x \rightarrow a} f(x) \right) \left(\lim_{x \rightarrow a} g(x) \right) = f(a)g(a)$; in the first equality the property that we have used is applicable since the limits on the right-hand side exist; in the second equality we have used our assumptions for $f(x)$ and $g(x)$.