Midterm Exam 136.151
 BRIEF Solutions

Values

[12] 1. Evaluate the limit or show that it does not exist.
[4] (a) $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}$
$\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}=\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} \frac{\sqrt{x+2}+2}{\sqrt{x+2}+2}=\lim _{x \rightarrow 2} \frac{x+2-4}{(x-2)(\sqrt{x+2}+2)}=\lim _{x \rightarrow 2} \frac{1}{(\sqrt{x+2}+2)}=\frac{1}{4}$
[4] (b) $\lim _{x \rightarrow \infty}\left(x-\sqrt{1+x^{2}}\right)$
$\lim _{x \rightarrow \infty}\left(x-\sqrt{1+x^{2}}\right)=\lim _{x \rightarrow \infty}\left(x-\sqrt{1+x^{2}}\right) \frac{x+\sqrt{1+x^{2}}}{x+\sqrt{1+x^{2}}}=\lim _{x \rightarrow \infty} \frac{x^{2}-1-x^{2}}{x+\sqrt{1+x^{2}}}=\lim _{x \rightarrow \infty} \frac{-1}{x+\sqrt{1+x^{2}}}=0$,
since the denominator in the last limit obviously tends to infinity while the numerator is -1 .
(Note: $\lim _{x \rightarrow \infty}\left(x-\sqrt{1+x^{2}}\right)=\infty-\infty=0$ or any variant of that false argument is worth 0 marks.)
[4] (c) $\lim _{x \rightarrow 2} \frac{x-2}{|x-2|}$
$\lim _{x \rightarrow 2^{+}} \frac{x-2}{|x-2|}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=\lim _{x \rightarrow 2^{+}} 1=1$,
$\lim _{x \rightarrow 2^{-}} \frac{x-2}{|x-2|}=\lim _{x \rightarrow 2^{-}} \frac{x-2}{-(x-2)}=\lim _{x \rightarrow 2^{+}}(-1)=-1$.
Since the two one-sided limits are not equal, the original limit does not exist.

Values

[7] 2. Let $f(x)=3 x^{2}+x$. Find $f^{\prime}(2)$ using ONLY the definition of the derivative.
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{3(2+h)^{2}+(2+h)-14}{h}=$
$=\lim _{h \rightarrow 0} \frac{3\left(4+4 h+h^{2}\right)+(2+h)-14}{h}=\lim _{h \rightarrow 0} \frac{13 h+3 h^{2}}{h}=\lim _{h \rightarrow 0} 13+3 h=13$
[13] 3. Compute the following derivatives. Do NOT simplify your answer after differentiating.
[4] (a) $f^{\prime}(x)$ if $f(x)=\sin \left(\sqrt{1+x^{2}}\right)$
$f^{\prime}(x)=\cos \left(\sqrt{1+x^{2}}\right) \frac{1}{2 \sqrt{1+x^{2}}} 2 x$.
[4] (b) $g^{\prime \prime}(x)$ if $g(x)=\frac{x}{1-x}$
$g^{\prime}(x)=\frac{(1-x)-x(-1)}{(1-x)^{2}}=\frac{1}{(1-x)^{2}}$.
$g^{\prime \prime}(x)=\left((1-x)^{-2}\right)^{\prime}=-2(1-x)^{-3}(-1)=\frac{2}{(1-x)^{3}}$.
(c) $h^{\prime}(x)$ if $h(x)=x^{(x-1)}$.

Start with $h(x)=x^{(x-1)}$ and apply the natural logarithm on both sides. Get $\ln h(x)=\ln x^{(x-1)}$, and so $\ln h(x)=(x-1) \ln x$. Now differentiate implicitly with respect to $x: \frac{1}{h(x)} h^{\prime}(x)=\ln x+\frac{x-1}{x}$, so that $h^{\prime}(x)=h(x)\left(\ln x+\frac{x-1}{x}\right)=x^{x-1}\left(\ln x+\frac{x-1}{x}\right)$.
[8] 4. Let $f(x)=e^{\cos x}$
[4] (a) Find $f^{\prime \prime}(0)$.
$f^{\prime}(x)=e^{\cos x}(-\sin x)$
$f^{\prime \prime}(x)=e^{\cos x}(-\sin x)(-\sin x)+e^{\cos x}(-\cos x)$
$f^{\prime \prime}(0)=0+e(-1)=-e$.
[4] (b) Find the equation of the tangent line of the curve $f(x)=e^{\cos x}$ at the point when $x=\frac{\pi}{2}$.
The slope of that tangent line is $f^{\prime}\left(\frac{\pi}{2}\right)=e^{\cos \frac{\pi}{2}}\left(-\sin \frac{\pi}{2}\right)=-1$. So, the equation of the tangent is $y=(-1) x+b$. When $x=\frac{\pi}{2}$ we see that $f\left(\frac{\pi}{2}\right)=1$. Since the line passes through that point we have that $1=(-1) \frac{\pi}{2}+b$, from where we find that $1+\frac{\pi}{2}=b$. So, the equation of the tangent line is $y=(-1) x+1+\frac{\pi}{2}$.
[10] 5. The equation $y^{5}-y \cos x=0$ defines y as a function on x.
[6] (a) Evaluate $\frac{d y}{d x}$ at the point $(0,1)$.
Differentiate implicitly to get $5 y^{4} \frac{d y}{d x}-\left(\frac{d y}{d x} \cos x+y(-\sin x)\right)=0$. At the point $(0,1)$ we

$$
\text { get } 5 \frac{d y}{d x}-\frac{d y}{d x}=0 \text { from where we find that } \frac{d y}{d x}=0
$$

[4] (b) Find an equation of the tangent line to the curve $y^{5}-y \cos x=0$ at the point $(0,1)$.

Since, by part (a), the slope of the tangent is 0 , its equation is $y=b$, where b is the y intercept. But it is given that $b=1$ and so the equation is $y=1$.
[4] 6. [bonus] Suppose $f(x)$ and $g(x)$ are continuous at $x=a$. Show that the function $f(x) g(x)$ is also continuous at $x=a$.
$\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)=f(a) g(a)$; in the first equality the property that we have used is applicable since the limits on the right-hand side exist; in the second equality we have used our assumptions for $f(x)$ and $g(x)$.

