B04.

136.150: Test \#5 20 minutes No Calculators

Name: \qquad Student Number: \qquad

1. Consider $f(x)=x^{3}-x$.
[9] (a) Find and classify the local extrema.
[7] (b) Sketch the graph of the function.
Solution. (a) Since $f^{\prime}(x)=3 x^{2}-1$ the critical points are $x=\frac{-1}{\sqrt{3}}$ and $x=\frac{1}{\sqrt{3}}$. Since $f^{\prime \prime}(x)=6 x$ the second derivative test gives the first point as a local maximum, the second as a local minimum.
(b)

[9] 2. Suppose $f^{\prime \prime}(x)=x, f^{\prime}(1)=1$ and $f(1)=1$. Find $f(x)$.
Solution. $f^{\prime}(x)=\frac{x^{2}}{2}+c_{1}$, and $f(x)=\frac{x^{3}}{6}+c_{1} x+c_{2}$. From the initial conditions we find $1=\frac{1}{2}+c_{1}$ and $1=\frac{1}{6}+c_{1}+c_{2}$. Solving this gives $c_{1}=\frac{1}{2}$ and $c_{2}=\frac{1}{3}$. So, $f(x)=\frac{x^{3}}{6}+\frac{1}{2} x+\frac{1}{3}$.
