136.150: Test \#4 20 minutes Solutions

1. Find y^{\prime} if $y=x^{2 x}$.

Solution. If $y=x^{2 x}$ then $\ln y=2 x \ln x$. Differentiate this to get $\frac{y^{\prime}}{y}=2 \ln x+2$, from where we find that $y^{\prime}=y(2 \ln x+2)=x^{2 x}(2 \ln x+2)$.
2. Find all local extrema of the function $f(x)=x-x^{2}+3$. Use the second derivative test to classify these local extrema (as maxima or minima). (No points will be awarded if the second derivative test is not used).

Solution. $f^{\prime}(x)=2-2 x$ and $f^{\prime}(x)=0$ gives $x=1$. This is the only critical point. Further, $f^{\prime \prime}(x)=-2$ and since this is always less than 0 it follows that our critical point yields a local maximum.
3. Find the interval(s) where the graph of the function $f(x)=x^{2}-x^{3}$ is concave up.

Solution. Compute $f^{\prime}(x)=2 x-3 x^{2}$ and $f^{\prime \prime}(x)=2-6 x$. The function $f(x)=x^{2}-x^{3}$ is concave up where $f^{\prime \prime}(x)>0$. Solving $f^{\prime \prime}(x)=2-6 x>0$ yields $x<\frac{1}{3}$. So, the function is concave up over the interval $\left(-\infty, \frac{1}{3}\right)$.

