B06.

136.150: Test \#3
 Solutions

Name: \qquad
\qquad

1. Use the definition of derivative to find the derivative $f^{\prime}(x)$ of the function $f(x)=x-1$. No points will be awarded if you do not use the definition of the derivative of a function.

Solution. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h-1)-(x-1)}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1$
2. Compute $f^{\prime}(x)$. Use the methods/properties that we have covered. Do NOT use the definition. You do not need to simplify your answers but you do need to compute all of the derivatives.
(a) $f(x)=\left(x^{2}-1\right) \sin x$

Solution. $f^{\prime}(x)=\left(x^{2}-1\right)^{\prime} \sin x+\left(x^{2}-1\right)(\sin x)^{\prime}=2 x \sin x+\left(x^{2}-1\right) \cos x$
(b) $f(x)=\frac{2^{x}}{(x+1)}$

Solution. $f^{\prime}(x)=\frac{\left(2^{x}\right)^{\prime}(x+1)-2^{x}(x+1)^{\prime}}{(x+1)^{2}}=\frac{2^{x}(\ln 2)(x+1)-2^{x}}{(x+1)^{2}}$
(c) $f(x)=\cos (\sqrt{x}+1)$

Solution. $f^{\prime}(x)=-\sin (\sqrt{x}+1)\left[(\sqrt{x}+1)^{\prime}\right]=-\frac{1}{2 \sqrt{x}} \sin (\sqrt{x}+1)$.

